Continuous liquid interface production (CLIP) utilizes projection ultraviolet (UV) light and oxygen inhibition to transform the sequential layered three-dimensional (3D) manufacturing into a continuous fabrication flow with tremendous improved fabrication speed and structure integrity. Incorporating ceramic particles to the photo-curable polymers allows for additive manufacturing of ceramic parts featuring sophisticated geometries, mitigating the difficulties associated with traditional manufacturing processes. The presence of ceramic particles within the ink, however, strongly scatters the incident UV light. In the high-resolution CLIP (microCLIP) process, the scattering effect can significantly alter the process characteristics, resulting in broadening of lateral feature dimensions alongside curing depth reduction. Varying exposure conditions to accommodate scattering additionally affects the oxygen deadzone thickness (DZ), which is dependent on power of incident light. This introduces a systematic defocusing error for large deadzone thickness to further complicate process control, such as the unwanted narrowing of part features. In this work, we developed a systematic framework for process optimization by balancing those effects via experimental characterization. We showed that the reported method can provide a set of optimal process parameters (UV power and stage speed) for high-resolution 3D fabrication in accommodating the distinct characteristics of given photo-curable ceramic ink. The method to optimize process parameter was validated experimentally via fabricating a gradient index Luneburg lens comprising densely packed woodpile building-blocks with a strut width of 100 μm and a layer thickness of 60 μm using microCLIP at dimensionally accurate exposure conditions.

References

References
1.
Lian
,
Q.
,
Yang
,
F.
,
Xin
,
H.
, and
Li
,
D.
,
2017
, “
Oxygen-Controlled Bottom-Up Mask-Projection Stereolithography for Ceramic 3D Printing
,”
Ceram. Int.
,
43
(
17
), pp.
14956
14961
.
2.
Guo
,
N.
, and
Leu
,
M. C.
,
2013
, “
Additive Manufacturing: Technology, Applications and Research Needs
,”
Front. Mech. Eng.
,
8
(
3
), pp.
215
243
.
3.
Halloran
,
J. W.
,
2016
, “
Ceramic Stereolithography: Additive Manufacturing for Ceramics by Photopolymerization
,”
Annu. Rev. Mater. Res.
,
46
(
1
), pp.
19
40
.
4.
Shirazi
,
S. F. S.
,
Gharehkhani
,
S.
,
Mehrali
,
M.
,
Yarmand
,
H.
,
Metselaar
,
H. S. C.
,
Kadri
,
N. A.
, and
Osman
,
N. A. A.
,
2015
, “
A Review on Powder-Based Additive Manufacturing for Tissue Engineering: Selective Laser Sintering and Inkjet 3D Printing
,”
Sci. Technol. Adv. Mater.
,
16
(
3
), p.
033502
.
5.
Sing
,
S. L.
,
Yeong
,
W. Y.
,
Wiria
,
F. E.
,
Tay
,
B. Y.
,
Zhao
,
Z.
,
Zhao
,
L.
,
Tian
,
Z.
, and
Yang
,
S.
,
2017
, “
Direct Selective Laser Sintering and Melting of Ceramics: A Review
,”
Rapid Prototyping J.
,
23
(
3
), pp.
611
623
.
6.
Cox
,
S. C.
,
Thornby
,
J. A.
,
Gibbons
,
G. J.
,
Williams
,
M. A.
, and
Mallick
,
K. K.
,
2015
, “
3D Printing of Porous Hydroxyapatite Scaffolds Intended for Use in Bone Tissue Engineering Applications
,”
Mater. Sci. Eng. C
,
47
, pp.
237
247
.
7.
Chen
,
Z.
,
Song
,
X.
,
Lei
,
L.
,
Chen
,
X.
,
Fei
,
C.
,
Chiu
,
C. T.
,
Qian
,
X.
,
Ma
,
T.
,
Yang
,
Y.
,
Shung
,
K.
,
Chen
,
Y.
, and
Zhou
,
Q.
,
2016
, “
3D Printing of Piezoelectric Element for Energy Focusing and Ultrasonic Sensing
,”
Nano Energy
,
27
, pp.
78
86
.
8.
Jakus
,
A. E.
,
Rutz
,
A. L.
,
Jordan
,
S. W.
,
Kannan
,
A.
,
Mitchell
,
S. M.
,
Yun
,
C.
,
Koube
,
K. D.
,
Yoo
,
S. C.
,
Whiteley
,
H. E.
,
Richter
,
C.-P.
,
Galiano
,
R. D.
,
Hsu
,
W. K.
,
Stock
,
S. R.
,
Hsu
,
E. L.
, and
Shah
,
R. N.
,
2016
, “
Hyperelastic ‘Bone’: A Highly Versatile, Growth Factor–Free, Osteoregenerative, Scalable, and Surgically Friendly Biomaterial
,”
Sci. Transl. Med.
,
8
(
358
), p.
358ra127
.
9.
Bose
,
S.
,
Vahabzadeh
,
S.
, and
Bandyopadhyay
,
A.
,
2013
, “
Bone Tissue Engineering Using 3D Printing
,”
Mater. Today
,
16
(
12
), pp.
496
504
.
10.
Trombetta
,
R.
,
Inzana
,
J. A.
,
Schwarz
,
E. M.
,
Kates
,
S. L.
, and
Awad
,
H. A.
,
2017
, “
3D Printing of Calcium Phosphate Ceramics for Bone Tissue Engineering and Drug Delivery
,”
Ann. Biomed. Eng.
,
45
(
1
), pp.
23
44
.
11.
Faes
,
M.
,
Valkenaers
,
H.
,
Vogeler
,
F.
,
Vleugels
,
J.
, and
Ferraris
,
E.
,
2015
, “
Extrusion-Based 3D Printing of Ceramic Components
,”
Procedia CIRP
,
28
, pp.
76
81
.
12.
Gentry
,
S. P.
, and
Halloran
,
J. W.
,
2013
, “
Depth and Width of Cured Lines in Photopolymerizable Ceramic Suspensions
,”
J. Eur. Ceram. Soc.
,
33
(
10
), pp.
1981
1988
.
13.
Sun
,
C.
, and
Zhang
,
X.
,
2002
, “
The Influences of the Material Properties on Ceramic Micro-Stereolithography
,”
Sens. Actuators, A
,
101
(
3
), pp.
364
370
.
14.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators, A
,
121
(
1
), pp.
113
120
.
15.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
,
Samulski
,
E. T.
, and
DeSimone
,
J. M.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
.
16.
Van Lith
,
R.
,
Baker
,
E.
,
Ware
,
H.
,
Yang
,
J.
,
Farsheed
,
A. C.
,
Sun
,
C.
, and
Ameer
,
G.
,
2016
, “
3D‐Printing Strong High‐Resolution Antioxidant Bioresorbable Vascular Stents
,”
Adv. Mater. Technol.
,
1
(
9
), p.
1600138
.
17.
Ware
,
H. O. T.
,
Farsheed
,
A. C.
,
Akar
,
B.
,
Duan
,
C.
,
Chen
,
X.
,
Ameer
,
G.
, and
Sun
,
C.
,
2018
, “
High-Speed on-Demand 3D Printed Bioresorbable Vascular Scaffolds
,”
Mater. Today Chem.
,
7
, pp.
25
34
.
18.
Bártolo
,
P. J.
,
2011
,
Stereolithography: Materials, Processes and Applications
,
Springer Science and Business Media
, New York.
19.
Dendukuri
,
D.
,
Pregibon
,
D. C.
,
Collins
,
J.
,
Hatton
,
T. A.
, and
Doyle
,
P. S.
,
2006
, “
Continuous-Flow Lithography for High-Throughput Microparticle Synthesis
,”
Nat. Mater.
,
5
(
5
), p.
365
.
20.
Carbon,
2019
, “
Carbon: Hardware That Drives Business
,” Redwood City, CA, accessed Oct. 3, https://www.carbon3d.com/hardware/
21.
EnvisionTEC
,
2017
, “
CDLM Printer Family
,” Dearborn, MI, accessed Oct. 3, https://envisiontec.com/3d-printers/cdlm-printer-family/
22.
Wagner
,
J. S.
,
2015
, “
The Search for a Highly Efficient Long-Wavelength Photoinitiator by Increasing Aryl Conjugation: From Computational Design, Characterization, and Potential Application
,” Undergraduate Honors thesis, Boulder, CO.
23.
Luneburg
,
R. K.
, and
Herzberger
,
M.
,
1964
,
Mathematical Theory of Optics
,
University of California Press
, Los Angeles, CA.
24.
Pfeiffer
,
C.
, and
Grbic
,
A.
,
2010
, “
A Printed, Broadband Luneburg Lens Antenna
,”
IEEE Trans. Antennas Propag.
,
58
(
9
), pp.
3055
3059
.
25.
Urrios
,
A.
,
Parra-Cabrera
,
C.
,
Bhattacharjee
,
N.
,
Gonzalez-Suarez
,
A. M.
,
Rigat-Brugarolas
,
L. G.
,
Nallapatti
,
U.
,
Samitier
,
J.
,
DeForest
,
C. A.
,
Posas
,
F.
,
Garcia-Cordero
,
J. L.
, and
Folch
,
A.
,
2016
, “
3D-Printing of Transparent Bio-Microfluidic Devices in PEG-DA
,”
Lab Chip
,
16
(
12
), pp.
2287
2294
.
26.
Neumann
,
M. G.
,
Miranda
,
W. G.
, Jr.
,
Schmitt
,
C. C.
,
Rueggeberg
,
F. A.
, and
Correa
,
I. C.
,
2005
, “
Molar Extinction Coefficients and the Photon Absorption Efficiency of Dental Photoinitiators and Light Curing Units
,”
J. Dent.
,
33
(
6
), pp.
525
532
.
You do not currently have access to this content.