This paper presents an investigation of green micromachining (GMM) forces during orthogonal micromachining green-state AlN ceramics. Green-state ceramics contain ceramic powders within a binder; processed samples are subsequently debound and sintered to obtain solid ceramic parts. An effective approach to create microscale features on ceramics is to use mechanical micromachining when the ceramics are at their green state. This approach, referred to as GMM, considerably reduces the forces and tool wear with respect to micromachining of sintered ceramics. As such, fundamental understanding on GMM of ceramics is critically needed. To this end, in this work, the force characteristics of powder injection molded AlN ceramics with two different binder states were experimentally investigated via orthogonal cutting. The effects of micromachining parameters on force components and specific energies were experimentally identified for a tungsten carbide (WC) and a single crystal diamond tools. As expected, the thrust forces were seen to be significantly larger than the cutting forces at low uncut chip thicknesses when using the carbide tool with its large edge radius. The cutting forces are found to be more sensitive to uncut chip thickness than the thrust forces are. When a sharp diamond tool is used, cutting forces are significantly larger than the thrust forces even for small uncut chip thicknesses. The specific energies follow an exponential decrease with increasing uncut chip thickness similar to the common trends in metal cutting. However, due to interaction characteristics between cutting edge and ceramic particles in the green body, evidence of plowing and rubbing along the cutting region was observed even with a sharp diamond tool.

References

References
1.
Baik
,
Y.
, and
Drew
,
R. A. L.
,
1996
, “
Aluminum Nitride: Processing and Applications
,”
Key Eng. Mater.
,
122–124
, p.
553
.
2.
Xu
,
G.
,
Olorunyolemi
,
T.
,
Wilson
,
O. C.
,
Lloyd
,
I. K.
, and
Carmel
,
Y.
,
2002
, “
Microwave Sintering of High-Density, High Thermal Conductivity AlN
,”
J. Mater. Res.
,
17
(
11
), pp.
2837
2845
.
3.
Moritz
,
T.
, and
Lenk
,
R.
,
2009
, “
Ceramic Injection Moulding: A Review of Developments in Production Technology, Materials and Applications
,”
Powder Inject. Mould. Int.
,
3
(3), pp.
23
34
.http://www.pim-international.com/powder-injection-moulding-international-magazine-archive/pim-international-vol-3-no-3-september-2009/
4.
Medvedovski
,
E.
, and
Peltsman
,
M.
,
2012
, “
Low Pressure Injection Moulding Mass Production Technology of Complex Shape Advanced Ceramic Components
,”
Adv. Appl. Ceram.
,
111
(
5–6
), pp.
333
344
.
5.
Gilissen
,
R.
,
Erauw
,
J.
,
Smolders
,
A.
,
Vanswijgenhoven
,
E.
, and
Luyten
,
J.
,
2000
, “
Gelcasting, a Near Net Shape Technique
,”
Mater. Des.
,
21
(
4
), pp.
251
257
.
6.
Ii
,
W. L. S.
, and
Wanmuhamad
,
W.
,
1996
, “
Machining of Green Si3N4 Polymer Bonded Ceramic Materials
,”
Mater. Manuf. Processes
,
11
(5), pp.
775
787
.
7.
Su
,
B.
,
Dhara
,
S.
, and
Wang
,
L.
,
2008
, “
Green Ceramic Machining: A Top-Down Approach for the Rapid Fabrication of Complex-Shaped Ceramics
,”
J. Eur. Ceram. Soc.
,
28
(
11
), pp.
2109
2115
.
8.
Desfontaines
,
M.
,
Jorand
,
Y.
,
Gonon
,
M.
, and
Fantozzi
,
G.
,
2005
, “
Characterisation of the Green Machinability of AlN Powder Compacts
,”
J. Eur. Ceram. Soc.
,
25
(
6
), pp.
781
791
.
9.
Mohanty
,
S.
,
Rameshbabu
,
A. P.
,
Mandal
,
S.
,
Su
,
B.
, and
Dhara
,
S.
,
2013
, “
Critical Issues in Near Net Shape Forming Via Green Machining of Ceramics: A Case Study of Alumina Dental Crown
,”
J. Asian Ceram. Soc.
,
1
(
3
), pp.
274
281
.
10.
Kamboj
,
R. K.
,
Dhara
,
S.
, and
Bhargava
,
P.
,
2003
, “
Machining Behaviour of Green Gelcast Ceramics
,”
J. Eur. Ceram. Soc.
,
23
(
7
), pp.
1005
1011
.
11.
Dadhich
,
P.
,
Srivas
,
P. K.
,
Mohanty
,
S.
, and
Dhara
,
S.
,
2015
, “
Microfabrication of Green Ceramics: Contact vs. Non-Contact Machining
,”
J. Eur. Ceram. Soc.
,
35
(
14
), pp.
3909
3916
.
12.
El-Wardany
,
T.
,
Barth
,
R.
,
Holowczak
,
J.
,
Tredway
,
W.
, and
Chen
,
L. J.
,
2009
, “
Optimum Process Parameters to Produce Green Ceramic Complex Parts
,”
CIRP Ann.–Manuf. Technol.
,
58
(
1
), pp.
109
112
.
13.
Onler
,
R.
,
Kate
,
K. H.
,
Atre
,
S. V.
, and
Ozdoganlar
,
O. B.
,
2016
, “
Effects of Nanoparticle Addition on Green State Micromachinability of Powder Injection Molded AlN
,”
11th International Conference on Micro Manufacturing
, Orange County, CA, Mar. 29–31, p.
92
.
14.
Kate
,
K.
,
Guo
,
A.
,
Onbattuvelli
,
V. P.
,
Chinn
,
R.
,
Onler
,
R.
,
Ozdoganlar
,
B.
, and
Atre
,
S.
,
2014
, “
Micro-Manufacturing of Ceramics by Combining Powder Injection Molding and Green Micromachining
,” International Conference on Powder Metallurgy & Particulate Materials (Powdermet), Orlando, FL, May 18–22, pp. 163–169.
15.
Klocke
,
F.
,
Gerent
,
O.
, and
Schippers
,
C.
,
1997
, “
Machining of Advanced Ceramics in the Green State
,”
CFI Ceram. Forum Int.
,
74
(6), pp.
288
290
.
16.
Onler
,
R.
,
Korkmaz
,
E.
,
Kate
,
K. H.
,
Chinn
,
R. E.
,
Atre
,
S. V.
, and
Ozdoganlar
,
O. B.
,
2019
, “
Green Micromachining of Ceramics Using Tungsten Carbide Micro-Endmills
,”
J. Mater. Process. Tech.
,
267
, pp. 268–279.
17.
Dow
,
T. A.
,
Miller
,
E. L.
, and
Garrard
,
K.
,
2004
, “
Tool Force and Deflection Compensation for Small Milling Tools
,”
Precis. Eng.
,
28
(
1
), pp.
31
45
.
18.
Bao
,
W.
, and
Tansel
,
I. N.
,
2000
, “
Modeling Micro-End-Milling Operations—Part III: Influence of Tool Wear
,”
Int. J. Mach. Tools Manuf.
,
40
(
15
), pp.
2193
2211
.
19.
Dornfeld
,
D.
,
Min
,
S.
, and
Takeuchi
,
Y.
,
2006
, “
Recent Advances in Mechanical Micromachining
,”
CIRP Ann.–Manuf. Technol.
,
55
(
2
), pp.
745
768
.
20.
Jun
,
M. B. G.
,
Goo
,
C.
,
Malekian
,
M.
, and
Park
,
S.
,
2012
, “
A New Mechanistic Approach for Micro End Milling Force Modeling
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011006
.
21.
Altintas
,
Y.
, and
Jin
,
X.
,
2011
, “
Mechanics of Micro-Milling With Round Edge Tools
,”
CIRP Ann.–Manuf. Technol.
,
60
(
1
), pp.
77
80
.
22.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B. G.
,
2009
, “
Modeling of Dynamic Micro-Milling Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
586
598
.
23.
Filiz
,
S.
,
Conley
,
C. M.
,
Wasserman
,
M. B.
, and
Ozdoganlar
,
O. B.
,
2007
, “
An Experimental Investigation of Micro-Machinability of Copper 101 Using Tungsten Carbide Micro-Endmills
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1088
1100
.
24.
Bukvic
,
G.
,
de
,
L. E.
,
Sanchez
,
A.
,
Fortulan
,
C. A.
,
Fiocchi
,
A. A.
, and
Marinescu
,
I. D.
,
2012
, “
Green Machining Oriented to Diminish Density Gradient for Minimization of Distortion in Advanced Ceramics
,”
Mach. Sci.
,
16
(
2
), pp.
228
246
.
25.
Dandekar
,
C. R.
, and
Shin
,
Y. C.
,
2012
, “
Modeling of Machining of Composite Materials: A Review
,”
Int. J. Mach. Tools Manuf.
,
57
, pp.
102
121
.
26.
Pramanik
,
A.
,
Zhang
,
L. C.
, and
Arsecularatne
,
J. A.
, 2006, “
Prediction of Cutting Forces in Machining of Metal Matrix Composites
,”
Int. J. Mach. Tools Manuf.
,
46
(14), pp. 1795–1803.
27.
Liu
,
J.
,
Li
,
J.
,
Ji
,
Y.
, and
Xu
,
C.
,
2011
, “
Investigation on the Effect of SiC Nanoparticles on Cutting Forces for Micro-Milling Magnesium Matrix Composites
,”
ASME
Paper No. MSEC2011-50170.
28.
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Orthogonal Machining of Single-Crystal and Coarse-Grained Aluminum
,”
J. Manuf. Process.
,
14
(
2
), pp.
126
134
.
29.
Kota
,
N.
, and
Ozdoganlar
,
O. B.
,
2008
, “
A Simplified Model for Orthogonal Micromachining of FCC Single-Crystal Materials
,”
Trans. NAMRI/SME
,
36
, pp.
193
200
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.385.6785&rep=rep1&type=pdf
30.
Nahata
,
S.
,
Onler
,
R.
,
Shekhar
,
S.
,
Korkmaz
,
E.
, and
Ozdoganlar
,
O. B.
,
2018
, “
Radial Throw in Micromachining: Measurement and Analysis
,”
Precis. Eng.
,
54
, pp. 21–32.
31.
Nahata
,
S.
,
Onler
,
O. B.
, and
Ozdoganlar
,
O. B.
,
2019
, “
Radial Throw in Micromilling: The Effects on Surface Location Error, Sidewall Surface Roughness and Uncut Chip Thickness
,”
World Congress on Micro and Nano Manufacturing
, Portoroz, Slovenia, Sept. 18–20, pp. 161–154.
32.
Onbattuvelli
,
V. P.
,
Enneti
,
R. K.
,
Park
,
S. J.
, and
Atre
,
S. V.
,
2013
, “
The Effects of Nanoparticle Addition on SiC and AlN Powder-Polymer Mixtures: Packing and Flow Behavior
,”
Int. J. Refract. Met. Hard Mater.
,
36
, pp.
183
190
.
33.
Kate
,
K. H.
,
Enneti
,
R. K.
,
Park
,
S.-J.
,
German
,
R. M.
, and
Atre
,
S. V.
,
2014
, “
Predicting Powder-Polymer Mixture Properties for PIM Design
,”
Crit. Rev. Solid State Mater. Sci.
,
39
(
3
), pp.
197
214
.
34.
Onbattuvelli
,
V. P.
,
2010
, “
The Effects of Nanoparticle Addition on the Processing, Structure and Properties of SiC and AlN
,”
Ph.D. dissertation
, Oregon State University, Corvallis, ORhttps://ir.library.oregonstate.edu/concern/graduate_thesis_or_dissertations/zc77sv44m.
You do not currently have access to this content.