This paper reports on a polymer stamp-based mechanical exfoliation method for producing thin (<1 μm) graphite sheets from a highly ordered pyrolytic graphite (HOPG) source by tailoring key exfoliation process parameters, utilizing in-plane shear oscillation during exfoliation, and controlling the thickness of a polydimethylsiloxane (PDMS) stamp. Experiments on the effect of high frequency in-plane shear oscillation and the effect of PDMS stamp thickness are designed to reduce the thickness of exfoliated layers and to minimize surface morphological variations. Results show that the exfoliated sheets consist of a range of layer thicknesses, surface areas, and surface morphological features. The exfoliated HOPG sheets are also found to be thinner, more electrically and thermally conductive, and of higher quality than commercially available pyrolytic graphite sheets.

References

References
1.
Novoselov
,
K. S.
,
Jiang
,
D.
,
Schedin
,
F.
,
Booth
,
T. J.
,
Khotkevich
,
V. V.
,
Morozov
,
S. V.
, and
Geim
,
A. K.
,
2005
, “
Two-Dimensional Atomic Crystals
,”
Proc. Natl. Acad. Sci. U.S.A.
,
102
(
30
), pp.
10451
10453
.
2.
Miro
,
P.
,
Audiffred
,
M.
, and
Heine
,
T.
,
2014
, “
An Atlas of Two-Dimensional Materials
,”
Chem. Soc. Rev.
,
43
(
18
), pp.
6537
6554
.
3.
Butler
,
S. Z.
,
Hollen
,
S. M.
,
Cao
,
L.
,
Cui
,
Y.
,
Gupta
,
J. A.
,
Gutiérrez
,
H. R.
,
Heinz
,
T. F.
,
Hong
,
S. S.
,
Huang
,
J.
,
Ismach
,
A. F.
,
Johnston-Halperin
,
E.
,
Kuno
,
M.
,
Plashnitsa
,
V. V.
,
Robinson
,
R. D.
,
Ruoff
,
R. S.
,
Salahuddin
,
S.
,
Shan
,
J.
,
Shi
,
L.
,
Spencer
,
M. G.
,
Terrones
,
M.
,
Windl
,
W.
, and
Goldberger
,
J. E.
,
2013
, “
Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene
,”
ACS Nano
,
7
(
4
), pp.
2898
2926
.
4.
Geim
,
A. K.
, and
Grigorieva
,
I. V.
,
2013
, “
Van Der Waals Heterostructures
,”
Nature
,
499
(
7459
), pp.
419
425
.
5.
Nah
,
J.
,
Kumar
,
S. B.
,
Fang
,
H.
,
Chen
,
Y.-Z.
,
Plis
,
E.
,
Chueh
,
Y.-L.
,
Krishna
,
S.
,
Guo
,
J.
, and
Javey
,
A.
,
2012
, “
Quantum Size Effects on the Chemical Sensing Performance of Two-Dimensional Semiconductors
,”
J. Phys. Chem. C
,
116
(
17
), pp.
9750
9754
.
6.
Panasonic Corporation of North America
,
2016
, “
Pyrolytic Graphite Sheet: The Advanced Thermal Solution for Today's Designs
,” Panasonic Corporation of North America, accessed Apr. 26, 2019, http://www1.futureelectronics.com/Mailing/etechs/Panasonic/etechALERT_Panasonic_LightControleSolutions/Panasonic_PGS_Brochure_Online.pdf
7.
Panasonic
,
2015
, “
Pyrolytic Graphite Sheet Evolves to Meet Tough Thermal Demands
,” Electronic Design, accessed Apr. 26, 2019, http://electronicdesign.com/circuit-protection/pyrolytic-graphite-sheet-evolves-meet-tough-thermal-demands
8.
Wen
,
C.-Y.
, and
Huang
,
G.-W.
,
2008
, “
Application of a Thermally Conductive Pyrolytic Graphite Sheet to Thermal Management of a PEM Fuel Cell
,”
J. Power Sources
,
178
(
1
), pp.
132
140
.
9.
Yoichi
,
T.
,
Sayuri
,
K.
, and
Kuniaki
,
S.
,
2008
, “
Performance Improvement of Stacked Graphite Sheets for Cooling Applications
,”
58th Electronic Components and Technology Conference
(
ECTC
), Lake Buena Vista, FL, May 27–30, pp.
760
764
.
10.
Jayasena
,
B.
, and
Melkote
,
S. N.
,
2015
, “
An Investigation of PDMS Stamp Assisted Mechanical Exfoliation of Large Area Graphene
,”
Procedia Manuf.
,
1
, pp.
840
853
.
11.
Carlson
,
A.
,
Bowen
,
A. M.
,
Huang
,
Y.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2012
, “
Transfer Printing Techniques for Materials Assembly and Micro/Nanodevice Fabrication
,”
Adv. Mater.
,
24
(
39
), pp.
5284
5318
.
12.
Meitl
,
M. A.
,
Zhu
,
Z.-T.
,
Kumar
,
V.
,
Lee
,
K. J.
,
Feng
,
X.
,
Huang
,
Y. Y.
,
Adesida
,
I.
,
Nuzzo
,
R. G.
, and
Rogers
,
J. A.
,
2006
, “
Transfer Printing by Kinetic Control of Adhesion to an Elastomeric Stamp
,”
Nat Mater
,
5
(
1
), pp.
33
38
.
13.
Hahn
,
D.
,
2017
, “
Viscoelastic Polymer-Assisted Mechanical Exfoliation of Large Area Highly Oriented Pyrolytic Graphite
,” M.S. thesis, Georgia Institute of Technology, Atlanta, GA.
14.
Van der Pauw
,
L. J.
,
1958
, “
A Method of Measuring the Resistivity and Hall Coefficient on Lamellae of Arbitrary Shape
,”
Philips Tech. Rev.
,
20
, pp.
220
224
.
15.
Park
,
J. S.
,
Reina
,
A.
,
Saito
,
R.
,
Kong
,
J.
,
Dresselhaus
,
G.
, and
Dresselhaus
,
M. S.
,
2009
, “
Band Raman Spectra of Single, Double and Triple Layer Graphene
,”
Carbon
,
47
(
5
), pp.
1303
1310
.
16.
Parobek
,
D.
,
Shenoy
,
G.
,
Zhou
,
F.
,
Peng
,
Z.
,
Ward
,
M.
, and
Liu
,
H.
,
2016
, “
Synthesizing and Characterizing Graphene Via Raman Spectroscopy: An Upper-Level Undergraduate Experiment That Exposes Students to Raman Spectroscopy and a 2D Nanomaterial
,”
J. Chem. Educ.
,
93
(
10
), pp.
1798
1803
.
17.
Ferrari
,
A. C.
,
2007
, “
Raman Spectroscopy of Graphene and Graphite: Disorder, Electron–Phonon Coupling, Doping and Nonadiabatic Effects
,”
Solid State Commun.
,
143
(
1–2
), pp.
47
57
.
18.
Schroder
,
D. K.
,
2006
,
Semiconductor Material and Device Characterization
,
Wiley
,
Hoboken, NJ
, pp.
1
11
.
19.
Wang
,
Y.
,
Alsmeyer
,
D. C.
, and
McCreery
,
R. L.
,
1990
, “
Raman Spectroscopy of Carbon Materials: Structural Basis of Observed Spectra
,”
Chem. Mater.
,
2
(
5
), pp.
557
563
.
You do not currently have access to this content.