The unique capabilities of Aerosol Jet® technology for noncontact material deposition with in-flight adjustment of ink rheology in microdroplets are explained based on first principles of physics. The suitable range of ink droplet size is determined from the effectiveness for inertial impaction when depositing onto substrate and convenience for pneumatic manipulation, in-flight solvent evaporation, etc. The existence of a jet Reynolds number window is shown by a fluid dynamics analysis of impinging jets for Aerosol Jet® printing with long standoff between nozzle and substrate, which defines the operation range of gas flow rate according to the nozzle orifice diameter. The time scale for ink droplets to remove volatile solvent is shown to just coincide that for them to travel in the nozzle channel toward substrate after meeting the coflowing sheath gas, enabling the in-flight manipulation of ink properties for high aspect-ratio feature printing. With inks being able to solidify rapidly, 3D structures, such as tall micropillars and thin-wall boxes, can be fabricated with Aerosol Jet® printing. Having mist droplets in the range of 1–5 μm also makes it possible to print lines of width about 10 μm.

References

References
1.
Renn
,
M. J.
,
Marquez
,
G. H.
,
King
,
B. H.
,
Essien
,
M.
, and
Miller
,
W. D.
,
2002
, “
Flow- and Laser-Guided Direct Write of Electronic and Biological Components
,”
Direct-Write Technologies for Rapid Prototyping Applications: Sensors, Electronics, and Integrated Power Sources
,
A.
Pique
and
D. B.
Chrisey
, eds.,
Academic Press
,
San Diego, CA
, pp.
475
492
.
2.
Renn
,
M. J.
,
2006
and 2007, “
Direct WriteTM System
,” U.S. Patent Nos. 7,108,894 and 7,270,844.
3.
Renn
,
M. J.
,
King
,
B. H.
,
Essien
,
M.
, and
Hunter
,
L. J.
,
2006
, “
Apparatuses and Method for Maskless Mesoscale Material Deposition
,” U.S. Patent No. 7,045,015.
4.
Zollmer
,
V.
,
Muller
,
M.
,
Renn
,
M.
,
Busse
,
M.
,
Wirth
,
I.
,
Codlinski
,
D.
, and
Kardos
,
M.
,
2006
, “
Printing With Aerosol: A Maskless Deposition Technique Allows High Definition Printing of a Variety of Functional Materials
,”
Eur. Coat. J.
,
7–8
, pp.
46
55
.
5.
Hedges
,
M.
,
Kardos
,
M.
,
King
,
B.
, and
Renn
,
M.
,
2006
, “
Aerosol-Jet Printing for 3-D Interconnects, Flexible Substrates and Embedded Passives
,”
Third Annual International Wafer Level Packaging Conference (IWLPC 2006)
, San Jose, CA, Nov. 1–3, pp.
179
183
.
6.
Kahn
,
B. E.
,
2007
, “
The M3D Aerosol Jet System, an Alternative to Inkjet Printing for Printed Electronics
,”
Org. Printed Electron.
,
1
, pp.
14
17
.
7.
Cho
,
J. H.
,
Lee
,
J.
,
Xia
,
Y.
,
Kim
,
B. S.
,
He
,
Y.
,
Renn
,
M. J.
,
Lodge
,
T. P.
, and
Frisbie
,
C. D.
,
2008
, “
Printable Ion-Gel Gate Dielectrics for Low-Voltage Polymer Thin-Film Transistors on Plastic
,”
Nat. Mater.
,
7
(
11
), pp.
900
906
.
8.
King
,
B.
, and
Renn
,
M.
,
2009
, “
Aerosol Jet® Direct Write Printing for Mil-Aero Electronic Applications
,”
Lockheed Martin Palo Alto Colloquia
, Palo Alto, CA, Accessed May 2, 2019, http://www.optomec.com/wp-content/uploads/2014/04/Optomec_Aerosol_Jet_Direct_Write_Printing_for_Mil_Aero_Electronic_Apps.pdf
9.
Jones
,
C. S.
,
Lu
,
X.
,
Renn
,
M.
,
Stroder
,
M.
, and
Shih
,
W.-S.
,
2010
, “
Aerosol-Jet-Printed, High-Speed, Flexible Thin-Film Transistor Made Using Single-Walled Carbon Nanotube Solution
,”
Microelectron. Eng.
,
87
(
3
), pp.
434
437
.
10.
Christenson
,
K. K.
,
Paulsen
,
J. A.
,
Renn
,
M. J.
,
McDonald
,
K.
, and
Bourassa
,
J.
,
2011
, “
Direct Printing of Circuit Boards Using Aerosol Jet®
,”
NIP 27 Digital Fabrications
, Minneapolis, MN, Oct. 2–6, pp.
433
436
.https://www.imaging.org/site/PDFS/Reporter/Articles/2011_26/REP26_5_6_NIP27DF11_CHRISTENSON_PG433.pdf
11.
Hoeber
,
J.
,
Goth
,
C.
,
Franke
,
J.
, and
Hedges
,
M.
,
2011
, “
Electrical Functionalization of Thermoplastic Materials by Aerosol Jet Printing
,”
IEEE
13th Electronics Packaging Technology Conference
, Singapore, Dec. 7–9.
12.
Paulsen
,
J. A.
,
Renn
,
M. J.
,
Christenson
,
K. K.
, and
Plourde
,
R.
,
2012
, “
Printing Conformal Electronics on 3D Structures With Aerosol Jet® Technology
,”
Future of Instrumentation International Workshop
(
FIIW
), Gatlinburg, TN, Oct. 8–9.
13.
Zhao
,
D.
,
Liu
,
T.
,
Park
,
J. G.
,
Zhang
,
M.
,
Chen
,
J.-M.
, and
Wang
,
B.
,
2012
, “
Conductivity Enhancement of Aerosol-Jet-Printed Electronics by Using Silver Nanoparticles Ink With Carbon Nanobubes
,”
Microelectron. Eng.
,
96
, pp.
71
75
.
14.
Ha
,
M.
,
Zhang
,
W.
,
Braga
,
D.
,
Renn
,
M. J.
,
Kim
,
C. H.
, and
Frisbie
,
C. D.
,
2013
, “
Aerosol-Jet-Printed, 1 Volt H-Bride Drive Circuit on Plastic With Integrated Elecrochromic Pixel
,”
ACS Appl. Mater. Interfaces
,
5
(
24
), pp.
13198
13206
.
15.
Tait
,
J. G.
,
Witkowska
,
E.
,
Hirade
,
M.
,
Ke
,
T.-H.
,
Malinowski
,
P. E.
,
Steudel
,
S.
,
Adachi
,
C.
, and
Heremans
,
P.
,
2015
, “
Uniform Aerosol Jet Printed Polymer Lines With 30 μm Width for 140 Ppi Resolution RGB Organic Light Emitting Diodes
,”
Org. Electron.
,
22
, pp.
40
43
.
16.
Cai
,
F.
,
Pavlidis
,
S.
,
Papapolymerou
,
J.
,
Chang
,
Y. H.
,
Wang
,
K.
,
Zhang
,
C.
, and
Wang
,
B.
,
2014
, “
Aerosol Jet Printing for 3-D Multilayer Passive Microwave Circuitry
,”
44th European Microwave Conference
, Rome, Italy, Oct. 6–9.
17.
Rahman
,
T.
,
Renaud
,
L.
,
Heo
,
D.
,
Renn
,
M.
, and
Panat
,
R.
,
2015
, “
Aerosol Based Direct-Write Micro-Additive Fabrication Method for Sub-mm 3D Metal-Dielectric Structures
,”
J. Micromech. Microeng.
,
25
(
10
), p.
107002
.
18.
Wang
,
K.
,
Chang
,
Y.-H.
,
Zhang
,
C.
, and
Wang
,
B.
,
2016
, “
Conductive-on-Demand: Tailorable Polyimide/Carbon Nanotube Nanocomposite Thin Film by Dual-Material Aerosol Jet Printing
,”
Carbon
,
98
, pp.
397
403
.
19.
Cantu
,
E.
,
Tonello
,
S.
,
Abate
,
G.
,
Uberti
,
D.
,
Sardini
,
E.
, and
Serpelloni
,
M.
,
2018
, “
Aerosol Jet Printed 3D Electrochemical Sensors for Protain Detection
,”
Sensors
,
18
(
11
), p.
3179
.
20.
Kangas
,
S.
,
Feng
,
J.
,
Chen
,
Y.-L.
, and
Zeng
,
M.
,
2015
, “
Medical Device With Crystalline Drug Coating
,” U.S. Patent No.
9,056,152
.https://patents.google.com/patent/US9056152
21.
Weber
,
J.
, and
Feng
,
J. Q.
,
2015
, “
Protective Surfaces for Drug-Coated Medical Devices
,” U.S. Patent No. 9,061,127.
22.
Akhatov
,
I. S.
,
Hoey
,
J. M.
,
Swenson
,
O. F.
, and
Schulz
,
D. L.
,
2008
, “
Aerosol Focusing in Micro-Capillaries: Theory and Experiment
,”
J. Aerosol Sci.
,
39
(
8
), pp.
691
709
.
23.
Binder
,
S.
,
Glatthaar
,
M.
, and
Rädlein
,
E.
,
2014
, “
Analytical Investigation of Aerosol Jet Printing
,”
Aerosol Sci. Technol.
,
48
(
9
), pp.
924
929
.
24.
Feng
,
J. Q.
,
2015
, “
Sessile Drop Deformation Under an Impinging Jet
,”
Theor. Comput. Fluid Dyn.
,
29
(
4
), pp.
277
290
.
25.
Feng
,
J. Q.
,
2015
, “
Vapor Transport of a Volatile Solvent for a Multicomponent Aerosol Droplet
,”
Aerosol Sci. Technol.
,
49
(
9
), pp.
757
766
.
26.
Feng
,
J. Q.
,
2017
, “
A Computational Study of High-Speed Microdroplet Impact Onto a Smooth Solid Surface
,”
J. Appl. Fluid Mech.
,
10
(
1
), pp.
243
256
.
27.
Feng
,
J. Q.
,
2017
, “
A Computational Study of Particle Deposition Patterns From a Circular Laminar Jet
,”
J. Appl. Fluid Mech.
,
10
(
4
), pp.
1001
1012
.
28.
Feng
,
J. Q.
,
2017
, “
Multiphase Flow Analysis of Mist Transport Behavior in Aerosol Jet® System
,”
Int. J. Comput. Methods Exp. Meas.
,
6
(
1
), pp.
23
34
.
29.
Secor
,
E. B.
,
2018
, “
Principles of Aerosol Jet Printing
,”
Flexible Printed Electron.
,
3
(
3
), p.
035002
.
30.
Chen
,
G.
,
Gu
,
Y.
,
Tsang
,
H.
,
Hines
,
D. R.
, and
Das
,
S.
,
2018
, “
The Effect of Droplet Sizes on Overspray in Aerosol-Jet Printing
,”
Adv. Eng. Mater.
,
20
(
8
), p.
1701084
.
31.
Feng
,
J. Q.
,
2019
, “
Mist Flow Visualization for Round Jets in Aerosol Jet® Printing
,”
Aerosol Sci. Technol.
,
53
(
1
), pp.
45
52
.
32.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect-Ratio Silver Lines
,”
ACS Appl. Mater. Interfaces
,
5
(
11
), pp.
4856
4864
.
33.
Salary
,
R.
,
Lombardi
,
J. P.
,
Tootooni
,
M. S.
,
Donovan
,
R.
,
Rao
,
P. K.
,
Borgesen
,
P.
, and
Poliks
,
M. D.
,
2016
, “
Computational Fluid Dynamics Modeling and Online Monitoring of Aerosol Jet Printing Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
2
), p.
021015
.
34.
Salary
,
R.
,
Lombardi
,
J. P.
,
Weerawame
,
D. L.
,
Tootooni
,
M. S.
,
Rao
,
P. K.
, and
Poliks
,
M. D.
,
2018
, “
In Situ Functional Monitoring of Aerosol Jet-Printed Electronic Devices Using a Combined Sparse Representation-Based Classification (SRC) Approach
,”
ASME
Paper No. MSEC2018-6586.
35.
Gu
,
Y.
,
Gutierrez
,
D.
,
Das
,
S.
, and
Hines
,
D. R.
,
2017
, “
Inkwells for on-Demand Deposition Rate Measurement in Aerosol-Jet Based 3D Printing
,”
J. Micromech. Microeng.
,
27
(
9
), p.
097001
.
36.
Fuchs
,
N. A.
,
1964
,
The Mechanics of Aerosols
,
Pergamon Press
,
New York
.
37.
Friedlander
,
S. K.
,
1977
,
Smoke, Dust and Haze, Fundamentals of Aerosol Behavior
,
Wiley
,
New York
.
38.
Pui
,
D. Y. H.
,
Romay-Novas
,
F.
, and
Liu
,
B. Y. H.
,
1987
, “
Experimental Study of Particle Deposition in Bends of Circular Cross Section
,”
Aerosol Sci. Technol.
,
7
(
3
), pp.
301
315
.
39.
Donnelly
,
T. D.
,
Hogan
,
J.
,
Mugler
,
A.
,
Schubmehl
,
M.
,
Schommer
,
N.
,
Bernoff
,
A. J.
,
Dasnurkar
,
S.
, and
Ditmire
,
T.
,
2005
, “
Using Ultrasonic Atomization to Produce an Aerosol of Micron-Scale Particles
,”
Rev. Sci. Instrum.
,
76
(
11
), p.
113301
.
40.
Optomec
, 2019, “
Aerosol Jet Technology
,” Optomec, Inc., Albuquerque, NM,
Accessed
Apr. 12, 2019, https://www.optomec.com/printed-electronics/aerosol-jet-technology/
41.
May
,
K. R.
,
1973
, “
The Collison Nebulizer: Description, Performance and Application
,”
J. Aerosol Sci.
,
4
(
3
), pp.
235
243
.
42.
Feng
,
J. Q.
,
2018
, “
A Computational Analysis of Gas Jet Flow Effects on Liquid Aspiration in the Collison Nebulizer
,”
Fifth International Conference on Fluid Flow, Heat and Mass Transfer (FFHMT'18)
, Niagara Falls, ON, Canada, June 7–9, Paper No. 180.
43.
Marple
,
V. A.
, and
Chien
,
C. M.
,
1980
, “
Virtual Impactors: A Theoretical Study
,”
Environ. Sci. Technol.
,
14
(
8
), pp.
976
985
.
44.
Loo
,
B. W.
, and
Cork
,
C. P.
,
1988
, “
Development of High Efficiency Virtual Impactors
,”
Aerosol Sci. Technol.
,
9
(
3
), pp.
167
176
.
45.
Secor
,
E. B.
,
2018
, “
Guided Ink and Process Design for Aerosol Jet Printing Based on Annular Drying Effects
,”
Flexible Printed Electron.
,
3
(
3
), p.
035007
.
46.
Saleh
,
M. S.
,
Hu
,
C.
, and
Panat
,
R.
,
2017
, “
Three-Dimensional Microarchitected Materials and Devices Using Nanoparticle Assembly by Pointwise Spatial Printing
,”
Sci. Adv.
,
3
(
3
), p.
e1601986
.
47.
Renn
,
M. J.
,
Schrandt
,
M.
,
Renn
,
J.
, and
Feng
,
J. Q.
,
2017
, “
Localized Laser Sintering of Metal Nanoparticle Inks Printed With Aerosol Jet® Technology for Flexible Electronics
,”
J. Microelectron. Electron. Packaging
,
14
(
4
), pp.
132
139
.
You do not currently have access to this content.