Various nanocarbons (NCs) were used to study their surface groups under standardized Bohem titration, including: multiwalled carbon nanotube (CNT), graphene (G), Vulcan carbon (VC), and nanodiamond (ND). Endpoint-measured titration using second derivative method to quantify carboxylic, lactonic, and phenolic groups created on treated carbon surfaces shows a high precision comparable to other recent reports and with errors of 1 order of magnitude lower. The results exhibit major concentration of carboxyl group increased after the NCs were oxidized compared to the amount of other functional groups like phenols and lactonic groups. It is important highlight, the concentration ratio of carboxyl group with VC:VC-O was showed at 1:77, exhibited a major result regarding other NCs which exhibited ratios of 1:4.5, 1:1.4, and 1:2.5 for ND:ND-O, CNT:CNT-O, and G:G-O, respectively. It is concluded that VC is a NC that competes and excels in its capacity of oxidation with respect to the popular NCs as CNT, graphene (G), and ND.

References

References
1.
Kalijadis
,
A. M.
,
Vukčević
,
M. M.
,
Jovanović
,
Z. M.
,
Laušević
,
Z. V.
, and
Laušević
,
M. D.
,
2011
, “
Characterization of Surface Oxygen Groups on Different Carbon Materials by the Boehm Method and Temperature Programmed Desorption
,”
J. Serb. Chem. Soc.
,
76
(
5
), pp.
757
768
.
2.
Bai
,
Y.
,
Zhao
,
X.
,
Li
,
T.
,
Lv
,
Z.
,
Lv
,
S.
,
Han
,
H.
,
Yin
,
Y.
, and
Wang
,
H.
,.
2014
, “
First-Principles Investigation in the Raman and Infrared Spectra of sp 3 Carbon Allotropes
,”
Carbon
,
78
, pp.
70
78
.
3.
Qiao
,
Z.
,
Li
,
J.
,
Zhao
,
N.
,
Shi
,
C.
, and
Nash
,
P.
,
2006
, “
Structural Evolution and Raman Study of Nanocarbons From Diamond Nanoparticles
,”
Chem. Phys. Lett.
,
429
(
4–6
), pp.
479
482
.
4.
Scheibe
,
B.
,
Borowiak-Palen
,
E.
, and
Kalenczuk
,
R. J.
,
2010
, “
Oxidation and Reduction of Multiwalled Carbon Nanotubes—Preparation and Characterization
,”
Mater. Charact.
,
61
(
2
), pp.
185
191
.
5.
Xia
,
H.
,
Zhang
,
Y.
,
Chen
,
C.
,
Wu
,
W.
,
Yao
,
K.
, and
Zhang
,
J.
,
2016
, “
Ozone-Mediated Functionalization of Multi-Walled Carbon Nanotubes and Their Activities for Oxygen Reduction Reaction
,”
J. Mater. Sci. Technol.
,
32
(
6
), pp.
533
538
.
6.
Kim
,
Y. S.
, and
Park
,
C. R.
,
2016
, “
One-Pot Titration Methodology for the Characterization of Surface Acidic Groups on Functionalized Carbon Nanotubes
,”
Carbon
,
96
, pp.
729
741
.
7.
Schmidlin
,
L.
,
Pichot
,
V.
,
Comet
,
M.
,
Josset
,
S.
,
Rabu
,
P.
, and
Spitzer
,
D.
,
2012
, “
Identification, Quantification and Modification of Detonation Nanodiamond Functional Groups
,”
Diam. Relat. Mater.
,
22
, pp.
113
117
.
8.
Yan
,
Q.-L.
,
Gozin
,
M.
,
Zhao
,
F.-Q.
,
Cohen
,
A.
, and
Pang
,
S.-P.
,
2016
, “
Highly Energetic Compositions Based on Functionalized Carbon Nanomaterials
,”
Nanoscale
,
8
(
9
), pp.
4799
4851
.
9.
Zappielo
,
C. D.
,
Nanicuacua
,
D. M.
,
dos Santos
,
W. N. L.
,
da Silva
,
D. L. F.
,
Dall'Antônia
,
L. H.
,
de Oliveira
,
F. M.
,
Clausen
,
D. N.
, and
Tarley
,
C. R. T.
,
2016
, “
Solid Phase Extraction to On-Line Preconcentrate Trace Cadmium Using Chemically Modified Nano-Carbon Black With 3-Mercaptopropyltrimethoxysilane
,”
J. Braz. Chem. Soc.
,
27
(
10
), pp.
1715
1726
.
10.
Zhang
,
Z.
,
Pfefferle
,
L.
, and
Haller
,
G. L.
,
2014
, “
Comparing Characterization of Functionalized Multi-Walled Carbon Nanotubes by Potentiometric Proton Titration, NEXAFS, and XPS
,”
Chin. J. Catal.
,
35
(
6
), pp.
856
863
.
11.
Wu
,
Z.
,
Hamilton
,
R. F.
,
Wang
,
Z.
,
Holian
,
A.
, and
Mitra
,
S.
,
2014
, “
Oxidation Debris in Microwave Functionalized Carbon Nanotubes: Chemical and Biological Effects
,”
Carbon
,
68
, pp.
678
686
.
12.
FengChen
,
Z.
,
LingqianChang
,
T.
,
ZhengpingZhao
,
P.
, and
JintaoYang
,
M.
,
2017
, “
Synthesis and Characterization of Lignosulfonate-Derived Hierarchical Porous Graphitic Carbons for Electrochemical Performances
,”
Microporous Mesoporous Mater.
,
247
, pp.
184
189
.
13.
Boehm
,
H.-P.
,
Diehl
,
E.
,
Heck
,
W.
, and
Sappok
,
R.
,
1964
, “
Surface Oxides of Carbon
,”
Angew. Chem. Int. Ed. Engl.
,
3
(
10
), pp.
669
677
.
14.
Boehm
,
H. P.
,
2002
, “
Surface Oxides on Carbon and Their Analysis: A Critical Assessment
,”
Carbon
,
40
(
2
), pp.
145
149
.
15.
Oickle
,
A. M.
,
Goertzen
,
S. L.
,
Hopper
,
K. R.
,
Abdalla
,
Y. O.
, and
Andreas
,
H. A.
,
2010
, “
Standardization of the Boehm Titration—Part II: Method of Agitation, Effect of Filtering and Dilute Titrant
,”
Carbon
,
48
(
12
), pp.
3313
3322
.
16.
Doroodmand
,
M. M.
, and
Shafie
,
Z.
,
2014
, “
Solid-Based Titrimetry as a Straightforward Method for Simultaneous Detection of Hydroxyl and Carboxylic Functional Groups During Evaluation of the Acidity of Nanocarbons
,”
Sens. Actuators A
,
207
, pp.
32
38
.
17.
Hernandez-Ortiz
,
M.
,
Estevez-Martínez
,
Y.
,
Durón
,
S. M.
,
Escalante-García
,
I. L.
,
Vega-González
,
M.
, and
Castaño
,
V. M.
,
2016
, “
Morphology and Surface Structure of Nanocarbon Allotropes: A Comparative Study
,”
Fullerenes Nanotubes Carbon Nanostruct.
,
24
(
5
), pp.
345
352
.
18.
Amieva
,
E. J.-C.
,
Fuentes-Ramírez
,
R.
,
Martínez-Hernandez
,
A. L.
,
Millan-Chiu
,
B.
,
Lopez-Marin
,
L. M.
,
Castaño
,
V. M.
, and
Velasco-Santos
,
C.
,
2014
, “
Graphene Oxide and Reduced Graphene Oxide Modification With Polypeptide Chains From Chicken Feather Keratin
,”
J. Alloys Compd.
,
643
(
Suppl. 1
), pp.
S137
S143
.
19.
Goertzen
,
S. L.
,
Thériault
,
K. D.
,
Oickle
,
A. M.
,
Tarasuk
,
A. C.
, and
Andreas
,
H. A.
,
2010
, “
Standardization of the Boehm Titration—Part I: CO2 Expulsion and Endpoint Determination
,”
Carbon
,
48
(
4
), pp.
1252
1261
.
20.
Checchetti
,
A.
, and
Lanzo
,
J.
,
2015
, “
Qualitative Measurement of pH and Mathematical Methods for the Determination of the Equivalence Point in Volumetric Analysis
,”
World J. Chem. Educ.
,
3
(
3
), pp.
64
69
.
21.
Kim
,
Y. S.
,
Yang
,
S. J.
,
Lim
,
H. J.
,
Kim
,
T.
, and
Park
,
C. R.
,
2012
, “
A Simple Method for Determining the Neutralization Point in Boehm Titration Regardless of the CO2 Effect
,”
Carbon
,
50
(
9
), pp.
3315
3323
.
22.
Hanelt
,
S.
,
Orts-Gil
,
G.
,
Friedrich
,
J. F.
, and
Meyer-Plath
,
A.
,
2011
, “
Differentiation and Quantification of Surface Acidities on MWCNTs by Indirect Potentiometric Titration
,”
Carbon
,
49
(
9
), pp.
2978
2988
.
23.
Zellmer
,
D. L.
,
1997
, “
The Derivative End Point Methods
,” California State University, Fresno, CA, accessed Apr. 12, 2019, http://zimmer.csufresno.edu/~davidz/Chem102/Derivative/Derivative.html
24.
González-Guerrero
,
A. B.
,
Mendoza
,
E.
,
Pellicer
,
E.
,
Alsina
,
F.
,
Fernández-Sánchez
,
C.
, and
Lechuga
,
L. M.
,
2008
, “
Discriminating the Carboxylic Groups From the Total Acidic Sites in Oxidized Multi-Wall Carbon Nanotubes by Means of Acid–Base Titration
,”
Chem. Phys. Lett.
,
462
(
4–6
), pp.
256
259
.
25.
Kim
,
Y. S.
,
Yang
,
S. J.
,
Lim
,
H. J.
,
Kim
,
T.
,
Lee
,
K.
, and
Park
,
C. R.
,
2012
, “
Effects of Carbon Dioxide and Acidic Carbon Compounds on the Analysis of Boehm Titration Curves
,”
Carbon
,
50
(
4
), pp.
1510
1516
.
26.
Chen
,
J. P.
, and
Wu
,
S.
,
2004
, “
Acid/Base-Treated Activated Carbons: Characterization of Functional Groups and Metal Adsorptive Properties
,”
Langmuir
,
20
(
6
), pp.
2233
2242
.
You do not currently have access to this content.