During large-area electron beam irradiation, high energy flux pulses of electrons melt a thin layer of material. The objective of this work is to analyze the spatial frequencies of a turned, S7 tool steel surface before and after electron beam melting. It was observed that high frequency features are significantly reduced following melting, but lower frequency features were created and increased the unfiltered areal average roughness. Previous work on laser remelting-based polishing derived a critical frequency that defines the frequency above which higher frequency features are dampened. As the critical frequency depends on the melt duration that the surface experiences, a one-dimensional, transient temperature prediction model was created for this work to estimate the melt time for a single electron beam pulse. This model allowed for the calculation of a critical frequency that showed good ability to predict the frequencies that are dampened.

References

References
1.
Proskurovsky
,
D. I.
,
Rotshtein
,
V. P.
,
Ozur
,
G. E.
,
Markov
,
A. B.
,
Nazarov
,
D. S.
,
Shulov
,
V. A.
,
Ivanov
,
Y. F.
, and
Buchheit
,
R. G.
,
1998
, “
Pulsed Electron-Beam Technology for Surface Modification of Metallic Materials
,”
J. Vac. Sci. Technol. A
,
16
(
4
), pp.
2480
2488
.
2.
Uno
,
Y.
,
2007
, “
A New Polishing Method of Metal Mold With Large-Area Electron Beam Irradiation
,”
J. Mater. Process. Tech.
,
187–188
, pp.
77
80
.
3.
Murray
,
J. W.
,
Kinnell
,
P. K.
,
Cannon
,
A. H.
,
Bailey
,
B.
, and
Clare
,
A. T.
,
2013
, “
Surface Finishing of Intricate Metal Mould Structures by Large-Area Electron Beam Irradiation
,”
Precis. Eng.
,
37
(
2
), pp.
443
450
.
4.
Kim
,
J.
,
Lee
,
W. J.
, and
Park
,
H. W.
,
2018
, “
Temperature Predictive Model of the Large Pulsed Electron Beam (LPEB) Irradiation on Engineering Alloys
,”
Appl. Therm. Eng.
,
128
, pp.
151
158
.
5.
Bordatchev
,
E. V.
,
Hafiz
,
A. M. K.
, and
Tutunea-Fatan
,
O. R.
,
2014
, “
Performance of Laser Polishing in Finishing of Metallic Surfaces
,”
Int. J. Adv. Manuf. Tech.
,
73
(
1–4
), pp.
35
52
.
6.
Perry
,
T. L.
,
Werschmoeller
,
D.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2009
, “
Examination of Selective Pulsed Laser Micropolishing on Microfabricated Nickel Samples Using Spatial Frequency Analysis
,”
ASME J. Manuf. Sci. Eng.
,
131
(
2
), p.
021002
.
7.
Vadali
,
M.
,
Ma
,
C.
,
Duffie
,
N. A.
,
Li
,
X.
, and
Pfefferkorn
,
F. E.
,
2012
, “
Pulsed Laser Micro Polishing: Surface Prediction Model
,”
J. Manuf. Process.
,
14
(
3
), pp.
307
315
.
8.
ASTM International
,
2015
, “Standard Specification for Tool Steels Alloy,”
ASTM International
,
West Conshohocken, PA
, Standard No. ASTM A681-08 2015.
9.
MatWeb, 2019, “
Bohler-Uddeholm COMPAX™ AISI S7 MOLD QUALITY Cold Work Steel
,” MatWeb, accessed Mar. 26, 2019, http://www.matweb.com/search/datasheet.aspx?matguid=41a925eea26a46b6b8528ef80c68a992
10.
Battezzati
,
L.
, and
Greer
,
A. L.
,
1989
, “
The Viscosity of Liquid Metals and Alloys
,”
Acta Metall. Mater.
,
37
(
7
), pp.
1791
1802
.
11.
Kalup
,
A.
,
Smetana
,
B.
,
Kawuloková
,
M.
,
Zlá
,
S.
,
Francová
,
H.
,
Dostál
,
P.
,
Waloszková
,
K.
,
Waloszková
,
L.
, and
Dobrovská
,
J.
,
2017
, “
Liquidus and Solidus Temperatures and Latent Heats of Melting of Steels
,”
J. Therm. Anal. Calorim.
,
127
(
1
), pp.
123
128
.
12.
Zhang
,
Y.
,
Evans
,
J. R. G.
, and
Yang
,
S.
,
2011
, “
Corrected Values for Boiling Points and Enthalpies of Vaporization of Elements in Handbooks
,”
J. Chem. Eng. Data
,
56
(
2
), pp.
328
337
.
13.
Saqid
,
H.
,
2012
, “
Determination of Steel Emissivity for the Temperature Prediction of Structural Steel Members in Fire
,”
J. Mater. Civ. Eng.
,
25
(
2
), pp.
167
173
.
14.
Hu
,
H.
, and
Argyropoulos
,
S. A.
,
1996
, “
Mathematical Modelling of Solidification and Melting: A Review
,”
Model. Simul. Mater. Sci. Eng.
,
4
(
4
), pp.
371
396
.
You do not currently have access to this content.