Functionalized metallic nanofeatures can be selectively fabricated via ultrashort laser processing; however, the cost-effective large-area texturing, intrinsically constrained by the diffraction limit of light, remains a challenging issue. A high-intensity near-field phenomenon that takes place when irradiating microsized spheres, referred to as photonic nanojet (PN), was investigated in the transitional state between geometrical optics and dipole regime to fabricate functionalized metallic subwavelength features. Finite element simulations were performed to predict the PN focal length and beam spot size, and nanofeature formation. A systematic approach was employed to functionalize metallic surface by varying the pulse energy, focal offset, and number of pulses to fabricate controlled array of nanoholes and to study the generation of triangular and rhombic laser-induced periodic surface structures (LIPSS). Finally, large-area texturing was investigated to minimize the dry laser cleaning (DLC) effect and improve homogeneity of PN-assisted texturing. Tailored dimensions and densities of achievable surface patterns could provide hexagonal light scattering and selective optical reflectance for a specific light wavelength. Surfaces exhibited controlled wetting properties with either hydrophilicity or hydrophobicity. No correlation was found between wetting and microbacterial colonization properties of textured metallic surfaces after 4 h incubation of Escherichia coli. However, an unexpected bacterial repellency was observed.

References

References
1.
Skoulas
,
E.
,
Manousaki
,
A.
,
Fotakis
,
C.
, and
Stratakis
,
E.
,
2017
, “
Biomimetic Surface Structuring Using Cylindrical Vector Femtosecond Laser Beams
,”
Sci. Rep.
,
7
, p.
45114
.
2.
Gnilitskyi
,
I.
,
Orazi
,
L.
,
Bulgakova
,
N. M.
,
Derrien
,
T. J.-Y.
,
Mocek
,
T.
, and
Levy
,
Y.
,
2017
, “
High-Speed Manufacturing of Highly Regular Femtosecond Laser-Induced Periodic Surface Structures: Physical Origin of Regularity
,”
Sci. Rep.
,
7
, p.
8485
.
3.
Müller-Meskamp
,
L.
,
Kim
,
Y. H.
,
Roch
,
T.
,
Hofmann
,
S.
,
Scholz
,
R.
,
Eckardt
,
S.
,
Leo
,
K.
, and
Lasagni
,
A. F.
,
2012
, “
Efficiency Enhancement of Organic Solar Cells by Fabricating Periodic Surface Textures Using Direct Laser Interference Patterning
,”
Adv. Mater.
,
24
(
7
), pp.
906
910
.
4.
Palneedi
,
H.
,
Park
,
J. H.
,
Maurya
,
D.
,
Peddigari
,
M.
,
Hwang
,
G.-T.
,
Annapureddy
,
V.
,
Kim
,
J.-W.
,
Choi
,
J.-J.
,
Hahn
,
B.-D.
,
Priya
,
S.
,
Lee
,
K. J.
, and
Ryu
,
J.
,
2018
, “
Laser Irradiation of Metal Oxide Films and Nanostructures: Applications and Advances
,”
Adv. Mater
,
30
(
14
), p.
1705148
.
5.
Huerta-Murillo
,
D.
,
García-Girón
,
A.
,
Romano
,
J. M.
,
Cardoso
,
J. T.
,
Cordovilla
,
F.
,
Walker
,
M.
,
Dimov
,
S. S.
, and
Ocaña
,
J. L.
,
2019
, “
Wettability Modification of Laser-Fabricated Hierarchical Surface Structures in Ti-6Al-4V Titanium Alloy
,”
Appl. Surf. Sci.
,
463
, pp.
838
846
.
6.
Romano
,
J.-M.
,
Garcia-Giron
,
A.
,
Penchev
,
P.
, and
Dimov
,
S.
,
2018
, “
Triangular Laser-Induced Submicron Textures for Functionalising Stainless Steel Surfaces
,”
Appl. Surf. Sci.
,
440
, pp.
162
169
.
7.
Whitehead
,
K. A.
,
Colligon
,
J.
, and
Verran
,
J.
,
2005
, “
Retention of Microbial Cells in Substratum Surface Features of Micrometer and Sub-Micrometer Dimensions
,”
Colloids Surf. B Biointerfaces.
,
41
(
2–3
), pp.
129
138
.
8.
Helbig
,
R.
,
Günther
,
D.
,
Friedrichs
,
J.
,
Rößler
,
F.
,
Lasagni
,
A.
, and
Werner
,
C.
,
2016
, “
The Impact of Structure Dimensions on Initial Bacterial Adhesion
,”
Biomater Sci.
,
4
(
7
), pp.
1074
1078
.
9.
Anselme
,
K.
,
Davidson
,
P.
,
Popa
,
A. M.
,
Giazzon
,
M.
,
Liley
,
M.
, and
Ploux
,
L.
,
2010
, “
The Interaction of Cells and Bacteria With Surfaces Structured at the Nanometre Scale
,”
Acta Biomater.
,
6
(
10
), pp.
3824
3846
.
10.
Yi
,
G.
,
Yuan
,
Y.
,
Li
,
X.
, and
Zhang
,
Y.
,
2018
, “
ZnO Nanopillar Coated Surfaces With Substrate-Dependent Superbactericidal Property
,”
Small.
,
14
(
14
), p.
1703159
.
11.
Cunha
,
A.
,
Elie
,
A.-M.
,
Plawinski
,
L.
,
Serro
,
A. P.
,
Botelho do Rego
,
A. M.
,
Almeida
,
A.
,
Urdaci
,
M. C.
,
Durrieu
,
M.-C.
, and
Vilar
,
R.
,
2016
, “
Femtosecond Laser Surface Texturing of Titanium as a Method to Reduce the Adhesion of Staphylococcus Aureus and Biofilm Formation
,”
Appl. Surf. Sci.
,
360
, pp.
485
493
.
12.
Bieda
,
M.
,
Siebold
,
M.
, and
Lasagni
,
A. F.
,
2016
, “
Fabrication of Sub-Micron Surface Structures on Copper, Stainless Steel and Titanium Using Picosecond Laser Interference Patterning
,”
Appl. Surf. Sci.
,
387
, pp.
175
182
.
13.
Ahmed
,
R.
,
Yetisen
,
A. K.
,
Khoury
,
A. E.
, and
Butt
,
H.
,
2017
, “
Printable Ink Lenses, Diffusers, and 2D Gratings
,”
Nanoscale.
,
9
(
1
), pp.
266
276
.
14.
Young
,
J. F.
,
Preston
,
J. S.
,
van Driel
,
H. M.
, and
Sipe
,
J. E.
,
1983
, “
Laser-Induced Periodic Surface Structure—II: Experiments on Ge, Si, Al, and Brass
,”
Phys. Rev. B.
,
27
(
2
), pp.
1155
1172
.
15.
Heifetz
,
A.
,
Kong
,
S.-C.
,
Sahakian
,
A. V.
,
Taflove
,
A.
, and
Backman
,
V.
,
2009
, “
Photonic Nanojets
,”
J. Comput. Theor. Nanosci.
,
6
(
9
), pp.
1979
1992
.
16.
Yang
,
S.-M.
,
Jang
,
S. G.
,
Choi
,
D.-G.
,
Kim
,
S.
, and
Yu
,
H. K.
,
2006
, “
Nanomachining by Colloidal Lithography
,”
Small.
,
2
(
4
), pp.
458
475
.
17.
Abbe
,
E.
,
1873
, “
Beiträge Zur Theorie Des Mikroskops Und Der Mikroskopischen Wahrnehmung
,”
Arch. Für Mikrosk. Anat.
,
9
, pp. 413–468.
18.
Chen
,
Z.
,
Taflove
,
A.
, and
Backman
,
V.
,
2004
, “
Photonic Nanojet Enhancement of Backscattering of Light by Nanoparticles: A Potential Novel Visible-Light Ultramicroscopy Technique
,”
Opt. Express
,
12
(
7
), pp.
1214
1220
.
19.
Lecler
,
S.
,
Takakura
,
Y.
, and
Meyrueis
,
P.
,
2005
, “
Properties of a Three-Dimensional Photonic Jet
,”
Opt. Lett.
,
30
(
19
), pp.
2641
2643
.
20.
Delléa
,
O.
,
Shavdina
,
O.
,
Fugier
,
P.
,
Coronel
,
P.
,
Ollier
,
E.
, and
Désage
,
S.-F.
,
2014
, “
Control Methods in Microspheres Precision Assembly for Colloidal Lithography
,”
Precision Assembly Technologies and Systems
,
Springer
,
Berlin
, pp.
107
117
.
21.
Huang
,
S. M.
,
Hong
,
M. H.
,
Luk'yanchuk
,
B. S.
,
Zheng
,
Y. W.
,
Song
,
W. D.
,
Lu
,
Y. F.
, and
Chong
,
T. C.
,
2002
, “
Pulsed Laser-Assisted Surface Structuring With Optical Near-Field Enhanced Effects
,”
J. Appl. Phys.
,
92
(
5
), pp.
2495
2500
.
22.
McLeod
,
E.
, and
Arnold
,
C. B.
,
2008
, “
Subwavelength Direct-Write Nanopatterning Using Optically Trapped Microspheres
,”
Nat. Nanotechnol.
,
3
(
7
), pp.
413
417
.
23.
Theppakuttai
,
S.
, and
Chen
,
S.
,
2003
, “
Nanoscale Surface Modification of Glass Using a 1064 nm Pulsed Laser
,”
Appl. Phys. Lett.
,
83
(
4
), pp.
758
760
.
24.
Abdurrochman
,
A.
,
Lecler
,
S.
,
Mermet
,
F.
,
Tumbelaka
,
B. Y.
,
Serio
,
B.
, and
Fontaine
,
J.
,
2014
, “
Photonic Jet Breakthrough for Direct Laser Microetching Using Nanosecond Near-Infrared Laser
,”
Appl. Opt.
,
53
(
31
), pp.
7202
7207
.
25.
Guo
,
W.
,
Wang
,
Z. B.
,
Li
,
L.
,
Liu
,
Z.
,
Luk'yanchuk
,
B.
, and
Whitehead
,
D. J.
,
2008
, “
Chemical-Assisted Laser Parallel Nanostructuring of Silicon in Optical Near Fields
,”
Nanotechnology
,
19
(
45
), p.
455302
.
26.
McCloskey
,
D.
,
Rakovich
,
Y. P.
, and
Donegan
,
J. F.
,
2010
, “
Controlling the Properties of Photonic Jets
,”
12th International Conference on Transparent Optical Networks
, Munich, Germany, June 27–July 1, pp.
1
3
.
27.
Han
,
L.
,
Han
,
Y.
,
Gouesbet
,
G.
,
Wang
,
J.
, and
Gréhan
,
G.
,
2014
, “
Photonic Jet Generated by Spheroidal Particle With Gaussian-Beam Illumination
,”
Josa B.
,
31
(
7
), pp.
1476
1483
.
28.
Grojo
,
D.
,
Sandeau
,
N.
,
Boarino
,
L.
,
Constantinescu
,
C.
,
Leo
,
N. D.
,
Laus
,
M.
, and
Sparnacci
,
K.
,
2014
, “
Bessel-Like Photonic Nanojets From Core-Shell Sub-Wavelength Spheres
,”
Opt. Lett.
,
39
(
13
), pp.
3989
3992
.
29.
Zheng
,
Y. W.
,
Luk'yanchuk
,
B. S.
,
Lu
,
Y. F.
,
Song
,
W. D.
, and
Mai
,
Z. H.
,
2001
, “
Dry Laser Cleaning of Particles From Solid Substrates: Experiments and Theory
,”
J. Appl. Phys.
,
90
(
5
), pp.
2135
2142
.
30.
Arnold
,
N.
,
2003
, “
Theoretical Description of Dry Laser Cleaning
,”
Appl. Surf. Sci.
,
208–209
, pp.
15
22
.
31.
Mosbacher
,
M.
,
Dobler
,
V.
,
Boneberg
,
J.
, and
Leiderer
,
P.
,
2000
, “
Universal Threshold for the Steam Laser Cleaning of Submicron Spherical Particles From Silicon
,”
Appl. Phys. A
,
70
(6), pp.
669
672
.
32.
Vereecke
,
G.
,
Röhr
,
E.
, and
Heyns
,
M. M.
,
1999
, “
Laser-Assisted Removal of Particles on Silicon Wafers
,”
J. Appl. Phys.
,
85
(
7
), pp.
3837
3843
.
33.
O'Connell
,
C.
,
Sherlock
,
R. J.
, and
Glynn
,
T. J.
,
2010
, “
Fabrication of a Reusable Microlens Array for Laser-Based Structuring
,”
Opt. Eng.
,
49
, p.
014201
.
34.
Khan
,
A.
,
Wang
,
Z.
,
Sheikh
,
M. A.
,
Whitehead
,
D. J.
, and
Li
,
L.
,
2010
, “
Parallel Near-Field Optical Micro/Nanopatterning on Curved Surfaces by Transported Micro-Particle Lens Arrays
,”
J. Phys. Appl. Phys.
,
43
(
30
), p.
305302
.
35.
Khan
,
A.
,
Wang
,
Z.
,
Sheikh
,
M. A.
,
Whitehead
,
D. J.
, and
Li
,
L.
,
2011
, “
Laser Micro/Nano Patterning of Hydrophobic Surface by Contact Particle Lens Array
,”
Appl. Surf. Sci.
,
258
(
2
), pp.
774
779
.
36.
Sedao
,
X.
,
Derrien
,
T. J.-Y.
,
Romer
,
G. R. B. E.
,
Pathiraj
,
B.
, and
Huis in ‘t Veld
,
A. J.
,
2012
, “
Laser Surface Micro-/Nano-Structuring by a Simple Transportable Micro-Sphere Lens Array
,”
J. Appl. Phys.
,
112
(
10
), p.
103111
.
37.
Tebby
,
Z.
, and
Dellea
,
O.
,
2011
, “
Method for Depositing a Layer of Organized Particles on a Substrate
,” Patent No. WO2011107681 (A1).
38.
Pereira
,
A.
,
Grojo
,
D.
,
Chaker
,
M.
,
Delaporte
,
P.
,
Guay
,
D.
, and
Sentis
,
M.
,
2008
, “
Laser-Fabricated Porous Alumina Membranes for the Preparation of Metal Nanodot Arrays
,”
Small.
,
4
(
5
), pp.
572
576
.
39.
Leitz
,
K.-H.
,
Quentin
,
U.
,
Hornung
,
B.
,
Otto
,
A.
,
Alexeev
,
I.
, and
Schmidt
,
M.
,
2010
, “
Microsphere Near-Field Nanostructuring Using Picosecond Pulses
,”
Phys. Procedia
,
5
, pp.
237
244
.
40.
Münzer
,
H.-J.
,
Mosbacher
,
M.
,
Bertsch
,
M.
,
Zimmermann
,
J.
,
Leiderer
,
P.
, and
Boneberg
,
J.
,
2001
, “
Local Field Enhancement Effects for Nanostructuring of Surfaces
,”
J. Microsc.
,
202
, pp.
129
135
.
41.
Cai
,
W.
, and
Piestun
,
R.
,
2006
, “
Patterning of Silica Microsphere Monolayers With Focused Femtosecond Laser Pulses
,”
Appl. Phys. Lett.
,
88
(
11
), p.
111112
.
42.
Li
,
S.
,
Yang
,
Z.
,
Zhang
,
Z.
,
Gao
,
F.
,
Du
,
J.
, and
Zhang
,
S.
,
2013
, “
Study of Nanospheres Lithography Technology With Super-Lens for Fabricating Nano Holes
,”
J. Appl. Phys.
,
113
(
18
), p.
183102
.
43.
Refractive Index.Info, 2019, “Refractive index of SiO2,” accessed June 28, 2018, https://refractiveindex.info/?shelf=main&book=SiO2&page=Radhakrishnan-o
44.
Itagi
,
A. V.
, and
Challener
,
W. A.
,
2005
, “
Optics of Photonic Nanojets
,”
Josa A.
,
22
(
12
), pp.
2847
2858
.
45.
Mosbacher
,
M.
,
Münzer
,
H.-J.
,
Zimmermann
,
J.
,
Solis
,
J.
,
Boneberg
,
J.
, and
Leiderer
,
P.
,
2001
, “
Optical Field Enhancement Effects in Laser-Assisted Particle Removal
,”
Appl. Phys. A.
,
72
(
1
), pp.
41
44
.
46.
Piglmayer
,
K.
,
Denk
,
R.
, and
Bäuerle
,
D.
,
2002
, “
Laser-Induced Surface Patterning by Means of Microspheres
,”
Appl. Phys. Lett.
,
80
(
25
), pp.
4693
4695
.
47.
Vestentoft
,
K.
,
Olesen
,
J. A.
,
Christensen
,
B. H.
, and
Balling
,
P.
,
2005
, “
Nanostructuring of Surfaces by Ultra-Short Laser Pulses
,”
Appl. Phys. A.
,
80
(
3
), pp.
493
496
.
48.
Guo
,
W.
,
Wang
,
Z. B.
,
Li
,
L.
,
Whitehead
,
D. J.
,
Luk'yanchuk
,
B. S.
, and
Liu
,
Z.
,
2007
, “
Near-Field Laser Parallel Nanofabrication of Arbitrary-Shaped Patterns
,”
Appl. Phys. Lett.
,
90
(
24
), p.
243101
.
49.
Li
,
L.
,
Guo
,
W.
,
Wang
,
Z. B.
,
Liu
,
Z.
,
Whitehead
,
D.
, and
Luk'yanchuk
,
B.
,
2009
, “
Large-Area Laser Nano-Texturing With User-Defined Patterns
,”
J. Micromech. Microeng.
,
19
(
5
), p.
054002
.
50.
Huang
,
S. M.
,
Sun
,
Z.
,
Luk'yanchuk
,
B. S.
,
Hong
,
M. H.
, and
Shi
,
L. P.
,
2005
, “
Nanobump Arrays Fabricated by Laser Irradiation of Polystyrene Particle Layers on Silicon
,”
Appl. Phys. Lett.
,
86
(
16
), p.
161911
.
51.
Zhou
,
Y.
,
Hong
,
M. H.
,
Fuh
,
J.
,
Lu
,
L.
,
Luk'yanchuk
,
B. S.
,
Wang
,
Z. B.
,
Shi
,
L. P.
, and
Chong
,
T. C.
,
2006
, “
Direct Femtosecond Laser Nanopatterning of Glass Substrate by Particle-Assisted Near-Field Enhancement
,”
Appl. Phys. Lett.
,
88
(
2
), p.
023110
.
52.
Nedyalkov
,
N. N.
,
Atanasov
,
P. A.
, and
Obara
,
M.
,
2007
, “
Near-Field Properties of a Gold Nanoparticle Array on Different Substrates Excited by a Femtosecond Laser
,”
Nanotechnol.
,
18
(
30
), p.
305703
.
53.
Grojo
,
D.
,
Cros
,
A.
,
Delaporte
,
P.
, and
Sentis
,
M.
,
2006
, “
Time-of-Flight Measurements of Ejected Particles During Dry Laser Cleaning
,”
Appl. Phys. B.
,
84
(
3
), pp.
517
521
.
54.
Kallepalli
,
L. N. D.
,
Grojo
,
D.
,
Charmasson
,
L.
,
Delaporte
,
P.
,
Utéza
,
O.
,
Merlen
,
A.
,
Sangar
,
A.
, and
Torchio
,
P.
,
2013
, “
Long Range Nanostructuring of Silicon Surfaces by Photonic Nanojets From Microsphere Langmuir Films
,”
J. Phys. Appl. Phys.
,
46
, p.
145102
.
55.
Ahmed
,
R.
,
Yetisen
,
A. K.
,
Yun
,
S. H.
, and
Butt
,
H.
,
2017
, “
Color-Selective Holographic Retroreflector Array for Sensing Applications
,”
Light Sci. Appl.
,
6
(
2
), p.
e16214
.
56.
Ahmed
,
R.
,
Yetisen
,
A. K.
, and
Butt
,
H.
,
2017
, “
High Numerical Aperture Hexagonal Stacked Ring-Based Bidirectional Flexible Polymer Microlens Array
,”
ACS Nano.
,
11
(
3
), pp.
3155
3165
.
57.
Ahmed
,
R.
,
Rifat
,
A. A.
,
Hassan
,
M. U.
,
Yetisen
,
A. K.
, and
Butt
,
H.
,
2017
, “
Phase-Conjugated Directional Diffraction From a Retroreflector Array Hologram
,”
RSC Adv.
,
7
(
41
), pp.
25657
25664
.
You do not currently have access to this content.