We report the tuning of surface wetting through sacrificial nanoimprint lithography (SNIL). In this process, grown ZnO nanomaterials are transferred by imprint into a metallic glass (MG) and an elastomeric material, and then etched to impart controlled surface roughness. This process increases the hydrophilicity and hydrophobicity of both surfaces, the Pt57.5Cu14.7Ni5.3P22.5 MG and thermoplastic elastomer (TPE), respectively. The growth conditions of the ZnO change the characteristic length scale of the roughness, which in turn alters the properties of the patterned surface. The novelty of this approach includes reusability of templates and that it is able to create superhydrophilic and superhydrophobic surfaces in a manner compatible with the fabrication of macroscopic three-dimensional (3D) parts. Because the wettability is achieved by only modifying topography, without using any chemical surface modifiers, the prepared surfaces are relatively more durable.

References

References
1.
Kota
,
A. K.
,
Kwon
,
G.
,
Choi
,
W.
,
Mabry
,
J. M.
, and
Tuteja
,
A.
,
2012
, “
Hygro-Responsive Membranes for Effective Oil-Water Separation
,”
Nat. Commun.
,
3
, p.
1025
.
2.
Hermelin
,
E.
,
Petitjean
,
J.
,
Lacroix
,
J. C.
,
Chane-Ching
,
K. I.
,
Tanguy
,
J.
, and
Lacaze
,
P. C.
,
2008
, “
Ultrafast Electrosynthesis of High Hydrophobic Polypyrrole Coatings on a Zinc Electrode: Applications to the Protection Against Corrosion
,”
Chem. Mater.
,
20
(
13
), pp.
4447
4456
.
3.
Tahk
,
D.
,
Kim
,
T. I.
,
Yoon
,
H.
,
Choi
,
M.
,
Shin
,
K.
, and
Suh
,
K. Y.
,
2010
, “
Fabrication of Antireflection and Antifogging Polymer Sheet by Partial Photo Polymerization and Dry Etching
,”
Langmuir
,
26
(
4
), pp.
2240
2243
.
4.
Bhushan
,
B.
, and
Jung
,
Y. C.
,
2011
, “
Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction
,”
Prog. Mater. Sci.
,
56
(
1
), pp.
1
108
.
5.
Drelich
,
J.
,
Chibowski
,
E.
,
Meng
,
D. D.
, and
Terpilowski
,
K.
,
2011
, “
Hydrophilic and Superhydrophilic Surfaces and Materials
,”
Soft Matter
,
7
(
21
), pp.
9804
9828
.
6.
Zhang
,
X.
,
Shi
,
F.
,
Niu
,
J.
,
Jiang
,
Y. G.
, and
Wang
,
Z. Q.
,
2008
, “
Superhydrophobic Surfaces: From Structural Control to Functional Application
,”
J. Mater. Chem.
,
18
(
6
), pp.
621
633
.
7.
Roach
,
P.
,
Shirtcliffe
,
N. J.
, and
Newton
,
M. I.
,
2008
, “
Progress in Superhydrophobic Surface Development
,”
Soft Matter
,
4
(
2
), pp.
224
240
.
8.
Chen
,
C. B.
,
Li
,
R.
,
Xu
,
L. M.
, and
Yan
,
D. Y.
,
2014
, “
Three-Dimensional Superhydrophobic Porous Hybrid Monoliths for Effective Removal of Oil Droplets From the Surface of Water
,”
RSC Adv.
,
4
(
33
), pp.
17393
17400
.
9.
Ruan
,
C. P.
,
Shen
,
M. X.
,
Ren
,
X. Y.
,
Ai
,
K. L.
, and
Lu
,
L. H.
,
2016
, “
A Versatile and Scalable Approach Toward Robust Superhydrophobic Porous Materials With Excellent Absorbency and Flame Retardancy
,”
Sci. Rep.
,
6
, p.
31233
.
10.
Bird
,
J. C.
,
Dhiman
,
R.
,
Kwon
,
H. M.
, and
Varanasi
,
K. K.
,
2013
, “
Reducing the Contact Time of a Bouncing Drop
,”
Nature
,
503
(
7476
), pp.
385
388
.
11.
Schutzius
,
T. M.
,
Jung
,
S.
,
Maitra
,
T.
,
Graeber
,
G.
,
Kohme
,
M.
, and
Poulikakos
,
D.
,
2015
, “
Spontaneous Droplet Trampolining on Rigid Superhydrophobic Surfaces
,”
Nature
,
527
(
7576
), pp.
82
85
.
12.
Boreyko
,
J. B.
, and
Chen
,
C. H.
,
2009
, “
Self-Propelled Dropwise Condensate on Superhydrophobic Surfaces
,”
Phy. Rev. Lett.
,
103
(
18
), p.
184501
.
13.
Park
,
K. C.
,
Kim
,
P.
,
Grinthal
,
A.
,
He
,
N.
,
Fox
,
D.
,
Weaver
,
J. C.
, and
Aizenberg
,
J.
,
2016
, “
Condensation on Slippery Asymmetric Bumps
,”
Nature
,
531
(
7592
), pp.
78
82
.
14.
Zhao
,
J.
,
Zhang
,
X. B.
,
Chen
,
N.
, and
Pan
,
Q. M.
,
2012
, “
Why Superhydrophobicity Is Crucial for a Water-Jumping Microrobot? Experimental and Theoretical Investigations
,”
ACS Appl. Mater. Interfaces
,
4
(
7
), pp.
3706
3711
.
15.
Song
,
Y. S.
, and
Sitti
,
M.
,
2007
, “
Surface-Tension-Driven Biologically Inspired Water Strider Robots: Theory and Experiments
,”
IEE Trans. Rob.
,
23
(
3
), pp.
578
589
.
16.
Zhu
,
X. T.
,
Zhang
,
Z. Z.
,
Ren
,
G. N.
,
Yang
,
J.
,
Wang
,
K.
,
Xu
,
X. H.
,
Men
,
X. H.
, and
Zhou
,
X. Y.
,
2012
, “
A Novel Superhydrophobic Bulk Material
,”
J. Mater. Chem.
,
22
(
38
), pp.
20146
20148
.
17.
Ji
,
K. J.
,
Liu
,
J.
,
Zhang
,
J.
,
Chen
,
J.
, and
Dai
,
Z. D.
,
2014
, “
Super-Floatable Multidimensional Porous Metal Foam Integrated With a Bionic Superhydrophobic Surface
,”
J. Mater. Chem. A
,
2
(
39
), pp.
16589
16593
.
18.
Bhushan
,
B.
,
Jung
,
Y. C.
, and
Koch
,
K.
,
2009
, “
Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion
,”
Phil. Trans. R. Soc. A
,
367
(
1894
), pp.
1631
1672
.
19.
Fan
,
J. G.
,
Tang
,
X. J.
, and
Zhao
,
Y. P.
,
2004
, “
Water Contact Angles of Vertically Aligned Si Nanorod Arrays
,”
Nanotechnol.
,
15
(
5
), pp.
501
504
.
20.
Bhushan
,
B.
,
Jung
,
Y. C.
, and
Koch
,
K.
,
2009
, “
Self-Cleaning Efficiency of Artificial Superhydrophobic Surfaces
,”
Langmuir
,
25
(
5
), pp.
3240
3248
.
21.
Rupp
,
F.
,
Scheideler
,
L.
,
Rehbein
,
D.
,
Axmann
,
D.
, and
Geis-Gerstorfer
,
J.
,
2004
, “
Roughness Induced Dynamic Changes of Wettability of Acid Etched Titanium Implant Modifications
,”
Biomaterials
,
25
(
7–8
), pp.
1429
1438
.
22.
Bico
,
J.
,
Tordeux
,
C.
, and
Quere
,
D.
,
2001
, “
Rough Wetting
,”
Europhys. Lett.
,
55
(
2
), pp.
214
220
.
23.
Sabbah
,
A.
,
Youssef
,
A.
, and
Damman
,
P.
,
2016
, “
Superhydrophobic Surfaces Created by Elastic Instability of Pdms
,”
Appl. Sci.
,
6
(
5
), p.
152
.
24.
Kawai
,
A.
, and
Nagata
,
H.
,
1994
, “
Wetting Behavior of Liquid on Geometrical Rough-Surface Formed by Photolithography
,”
Jpn. J. Appl. Phys. Part 2
,
33
(
Pt 2
), pp.
L1283
L1285
.
25.
Shirtcliffe
,
N. J.
,
Aqil
,
S.
,
Evans
,
C.
,
McHale
,
G.
,
Newton
,
M. I.
,
Perry
,
C. C.
, and
Roach
,
P.
,
2004
, “
The Use of High Aspect Ratio Photoresist (Su-8) for Super-Hydrophobic Pattern Prototyping
,”
J. Micromech. Microeng.
,
14
(
10
), pp.
1384
1389
.
26.
Xia
,
Y.
,
Kim
,
E.
,
Zhao
,
X.-M.
,
Rogers
,
J. A.
,
Prentiss
,
M.
, and
Whitesides
,
G. M.
,
1996
, “
Complex Optical Surfaces Formed by Replica Molding against Elastomeric Masters
,”
Science
,
273
(
5273
), pp.
347
349
.
27.
Xu
,
B.
,
Arias
,
F.
,
Brittain
,
S. T.
,
Zhao
,
X. M.
,
Grzybowski
,
B.
,
Torquato
,
S.
, and
Whitesides
,
G. M.
,
1999
, “
Making Negative Poisson's Ratio Microstructures by Soft Lithography
,”
Adv. Mater.
,
11
(
14
), pp.
1186
1189
.
28.
Singer
,
J. P.
,
Pelligra
,
C. I.
,
Kornblum
,
N.
,
Choo
,
Y.
,
Gopinadhan
,
M.
,
Bordeenithikasem
,
P.
,
Ketkaew
,
J.
,
Liew, S. F.
,
Cao, H.
,
Schroers, J.
, and
Osuji, C. O.
,
2015
, “
Multiscale Patterning of a Metallic Glass Using Sacrificial Imprint Lithography
,”
Microsyst. Nanoeng.
,
1
, p.
15040
.
29.
Singer
,
J. P.
,
Gopinadhan
,
M.
,
Shao
,
Z.
,
Taylor
,
A. D.
,
Schroers
,
J.
, and
Osuji
,
C. O.
,
2015
, “
Nanoimprinting Sub-100 Nnn Features in a Photovoltaic Nanocomposite Using Durable Bulk Metallic Glass Molds
,”
ACS Appl. Mater. Interfaces
,
7
(
6
), pp.
3456
3461
.
30.
Busscher
,
H. J.
,
Stokroos
,
I.
,
Vandermei
,
H. C.
,
Rouxhet
,
P. G.
, and
Schakenraad
,
J. M.
,
1992
, “
Preparation and Characterization of Superhydrophobic Fep-Teflon Surfaces
,”
J. Adhes. Sci. Technol.
,
6
(
3
), pp.
347
356
.
31.
Zhang
,
X.
,
Jin
,
M.
,
Liu
,
Z.
,
Nishimoto
,
S.
,
Saito
,
H.
,
Murakami
,
T.
, and
Fujishima
,
A.
,
2006
, “
Preparation and Photocatalytic Wettability Conversion of Tio2-Based Superhydrophobic Surfaces
,”
Langmuir
,
22
(
23
), pp.
9477
9479
.
32.
Li
,
X. H.
,
Chen
,
G. M.
,
Ma
,
Y. M.
,
Feng
,
L.
,
Zhao
,
H. Z.
,
Jiang
,
L.
, and
Wang
,
F. S.
,
2006
, “
Preparation of a Super-Hydrophobic Poly(Vinyl Chloride) Surface Via Solvent-Nonsolvent Coating
,”
Polymer
,
47
(
2
), pp.
506
509
.
33.
Han
,
J. T.
,
Xu
,
X. R.
, and
Cho
,
K. W.
,
2005
, “
Diverse Access to Artificial Superhydrophobic Surfaces Using Block Copolymers
,”
Langmuir
,
21
(
15
), pp.
6662
6665
.
34.
Karuppuchamy
,
S.
, and
Jeong
,
J. M.
,
2005
, “
Super-Hydrophilic Amorphous Titanium Dioxide Thin Film Deposited by Cathodic Electrodeposition
,”
Mater. Chem. Phys.
,
93
(
2–3
), pp.
251
254
.
35.
Satyaprasad
,
A.
,
Jain
,
V.
, and
Nema
,
S. K.
,
2007
, “
Deposition of Superhydrophobic Nanostructured Teflon-Like Coating Using Expanding Plasma Arc
,”
Appl. Surf. Sci.
,
253
(
12
), pp.
5462
5466
.
36.
Genzer
,
J.
, and
Efimenko
,
K.
,
2000
, “
Creating Long-Lived Superhydrophobic Polymer Surfaces Through Mechanically Assembled Monolayers
,”
Science
,
290
(
5499
), pp.
2130
2133
.
37.
Song
,
X. Y.
,
Zhai
,
J.
,
Wang
,
Y. L.
, and
Jiang
,
L.
,
2005
, “
Fabrication of Superhydrophobic Surfaces by Self-Assembly and Their Water-Adhesion Properties
,”
J. Phy. Chem. B
,
109
(
9
), pp.
4048
4052
.
38.
Pozzato
,
A.
,
Dal Zilio
,
S.
,
Fois
,
G.
,
Vendramin
,
D.
,
Mistura
,
G.
,
Belotti
,
M.
,
Chen
,
Y.
, and
Natali
,
M.
,
2006
, “
Superhydrophobic Surfaces Fabricated by Nanoimprint Lithography
,”
Microelectron. Eng.
,
83
(
4–9
), pp.
884
888
.
39.
Lee
,
S. M.
, and
Kwon
,
T. H.
,
2006
, “
Mass-Producible Replication of Highly Hydrophobic Surfaces From Plant Leaves
,”
Nanotechnology
,
17
(
13
), pp.
3189
3196
.
40.
Radha
,
B.
,
Lim
,
S. H.
,
Saifullah
,
M. S. M.
, and
Kulkarni
,
G. U.
,
2013
, “
Metal Hierarchical Patterning by Direct Nanoimprint Lithography
,”
Sci. Rep.
,
3
, p.
1078
.
41.
Boinovich
,
L.
,
Emelyanenko
,
A. M.
, and
Pashinin
,
A. S.
,
2010
, “
Analysis of Long-Term Durability of Superhydrophobic Properties Under Continuous Contact With Water
,”
ACS Appl. Mater. Interfaces
,
2
(
6
), pp.
1754
1758
.
42.
Ellis
,
D. A.
,
Mabury
,
S. A.
,
Martin
,
J. W.
, and
Muir
,
D. C. G.
,
2001
, “
Thermolysis of Fluoropolymers as a Potential Source of Halogenated Organic Acids in the Environment
,”
Nature
,
412
(
6844
), pp.
321
324
.
43.
Johansson
,
N.
,
Fredriksson
,
A.
, and
Eriksson
,
P.
,
2008
, “
Neonatal Exposure to Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) Causes Neurobehavioural Defects in Adult Mice
,”
Neurotoxicology
,
29
(
1
), pp.
160
169
.
44.
Suja
,
F.
,
Pramanik
,
B. K.
, and
Zain
,
S. M.
,
2009
, “
Contamination, Bioaccumulation and Toxic Effects of Perfluorinated Chemicals (PFCS) in the Water Environment: A Review Paper
,”
Water Sci. Technol.
,
60
(
6
), pp.
1533
1544
.
45.
Song
,
W.
,
Zhang
,
J.
,
Xie
,
Y.
,
Cong
,
Q.
, and
Zhao
,
B.
,
2009
, “
Large-Area Unmodified Superhydrophobic Copper Substrate Can Be Prepared by an Electroless Replacement Deposition
,”
J. Colloid Interf. Sci.
,
329
(
1
), pp.
208
211
.
46.
Shirtcliffe
,
N. J.
,
McHale
,
G.
,
Newton
,
M. I.
,
Chabrol
,
G.
, and
Perry
,
C. C.
,
2004
, “
Dual-Scale Roughness Produces Unusually Water-Repellent Surfaces
,”
Adv. Mater.
,
16
(
21
), pp.
1929
1932
.
47.
Baruah
,
S.
, and
Dutta
,
J.
,
2009
, “
Hydrothermal Growth of Zno Nanostructures
,”
Sci. Technol. Adv. Mat.
,
10
(
1
), p.
013001
.
48.
Vayssieres
,
L.
,
Keis
,
K.
,
Lindquist
,
S. E.
, and
Hagfeldt
,
A.
,
2001
, “
Purpose-Built Anisotropic Metal Oxide Material: 3d Highly Oriented Microrod Array of Zno
,”
J. Phys. Chem. B
,
105
(
17
), pp.
3350
3352
.
49.
Verges
,
M. A.
,
Mifsud
,
A.
, and
Serna
,
C. J.
,
1990
, “
Formation of Rod-Like Zinc-Oxide Microcrystals in Homogeneous Solutions
,”
J. Chem. Soc. Faraday Trans.
,
86
(
6
), pp.
959
963
.
50.
Abdelfatah
,
M.
, and
El-Shaer
,
A.
,
2018
, “
One Step to Fabricate Vertical Submicron Zno Rod Arrays by Hydrothermal Method Without Seed Layer for Optoelectronic Devices
,”
Mater. Lett.
,
210
, pp.
366
369
.
51.
Kim
,
S.
,
Kim
,
M. S.
,
Park
,
H.
,
Nam
,
G.
,
Yoon
,
H.
, and
Leem
,
J. Y.
,
2014
, “
Seed-Layer-Free Hydrothermal Growth of Zinc Oxide Nanorods on Porous Silicon
,”
Electron. Mater. Lett.
,
10
(
3
), pp.
565
571
.
52.
Fan
,
X.
,
Fang
,
G. J.
,
Guo
,
S. S.
,
Liu
,
N. S.
,
Gao
,
H. M.
,
Qin
,
P. L.
,
Li
,
S. Z.
,
Long, H.
,
Zheng, Q.
, and
Zhao, X.
,
2011
, “
Controllable Synthesis of Flake-Like Al-Doped Zno Nanostructures and Its Application in Inverted Organic Solar Cells
,”
Nanoscale Res. Lett.
,
6
(
1
), p.
546
.
53.
Xia
,
T.
,
Li
,
N.
,
Wu
,
Y.
, and
Liu
,
L.
,
2012
, “
Patterned Superhydrophobic Surface Based on Pd-Based Metallic Glass
,”
Appl. Phys. Lett.
,
101
(
8
), p.
081601
.
54.
Li
,
N.
,
Xia
,
T.
,
Heng
,
L.
, and
Liu
,
L.
,
2013
, “
Superhydrophobic Zr-Based Metallic Glass Surface With High Adhesive Force
,”
Appl. Phys. Lett.
,
102
(
25
), p.
251603
.
55.
Arora
,
H. S.
,
Xu
,
Q.
,
Xia
,
Z.
,
Ho
,
Y. H.
,
Dahotre
,
N. B.
,
Schroers
,
J.
, and
Mukherjee
,
S.
,
2013
, “
Wettability of Nanotextured Metallic Glass Surfaces
,”
Scr. Mater.
,
69
(
10
), pp.
732
735
.
56.
Zhao
,
K.
,
Liu
,
K. S.
,
Li
,
J. F.
,
Wang
,
W. H.
, and
Jiang
,
L.
,
2009
, “
Superamphiphobic Cali-Based Bulk Metallic Glasses
,”
Scr. Mater.
,
60
(
4
), pp.
225
227
.
57.
Liu
,
K.
,
Li
,
Z.
,
Wang
,
W.
, and
Jiang
,
L.
,
2011
, “
Facile Creation of Bio-Inspired Superhydrophobic Ce-Based Metallic Glass Surfaces
,”
Appl. Phys. Lett.
,
99
(
26
), p.
261905
.
58.
Gao
,
M.
,
Wang
,
D. P.
,
Huang
,
Y. F.
,
Meng
,
S.
, and
Wang
,
W. H.
,
2016
, “
Tunable Hydrophobicity on Fractal and Micro-Nanoscale Hierarchical Fracture Surface of Metallic Glasses
,”
Mater. Des.
,
95
, pp.
612
617
.
59.
Huang
,
L.
,
Pu
,
C.
,
Fisher
,
R. K.
,
Mountain
,
D. J. H.
,
Gao
,
Y. F.
,
Liaw
,
P. K.
,
Zhang
,
W.
, and
He
,
W.
,
2015
, “
A Zr-Based Bulk Metallic Glass for Future Stent Applications: Materials Properties, Finite Element Modeling, and In Vivo Human Vascular Cell Response
,”
Acta Biomaterialia
,
25
, pp.
356
368
.
60.
Schroers
,
J.
, and
Johnson
,
W. L.
,
2004
, “
Ductile Bulk Metallic Glass
,”
Phys. Rev. Lett.
,
93
(
25
), p.
255506
.
61.
Roozbehi
,
M.
,
Sangpour
,
P.
,
Khademi
,
A.
, and
Moshfegh
,
A. Z.
,
2011
, “
The Effect of Substrate Surface Roughness on Zno Nanostructures Growth
,”
Appl. Surf. Sci.
,
257
(
8
), pp.
3291
3297
.
62.
Schroers
,
J.
,
2005
, “
The Superplastic Forming of Bulk Metallic Glasses
,”
JOM
,
57
(
5
), pp.
35
39
.
63.
Li
,
N.
,
Chen
,
W.
, and
Liu
,
L.
,
2016
, “
Thermoplastic Micro-Forming of Bulk Metallic Glasses: A Review
,”
JOM
,
68
(
4
), pp.
1246
1261
.
64.
Schroers
,
J.
,
2010
, “
Processing of Bulk Metallic Glass
,”
Adv. Mater.
,
22
(
14
), pp.
1566
1597
.
65.
Hasan
,
M.
,
Warzywoda
,
J.
, and
Kumar
,
G.
,
2018
, “
Decoupling the Effects of Surface Texture and Chemistry on the Wetting of Metallic Glasses
,”
Appl. Surf. Sci.
,
447
, pp.
355
362
.
66.
Hasan
,
M.
,
2017
,
Decoupling the Effects of Surface Roughness and Chemistry on the Wetting of Metallic Glasses
,
Texas Tech University
,
Lubbock, TX
.
67.
Pawar
,
R. C.
,
Kim
,
H.
, and
Lee
,
C. S.
,
2014
, “
Defect-Controlled Growth of Zno Nanostructures Using Its Different Zinc Precursors and Their Application for Effective Photodegradation
,”
Curr. Appl. Phys.
,
14
(
4
), pp.
621
629
.
68.
Wenzel
,
R. N.
,
1949
, “
Surface Roughness and Contact Angle
,”
J. Phys. Chem.
,
53
(
9
), pp.
1466
1467
.
69.
Bhushan
,
B.
, and
Nosonovsky
,
M.
,
2010
, “
The Rose Petal Effect and the Modes of Superhydrophobicity
,”
Philos. Trans. R. Soc. a-Math. Phys. Eng. Sci.
,
368
(
1929
), pp.
4713
4728
.
70.
Wang
,
Y. Q.
,
Shi
,
Y.
,
Pan
,
L. J.
,
Yang
,
M.
,
Peng
,
L. L.
,
Zong
,
S.
,
Shi
,
Y.
, and
Yu
,
G. H.
,
2014
, “
Multifunctional Superhydrophobic Surfaces Templated From Innately Microstructured Hydrogel Matrix
,”
Nano Lett.
,
14
(
8
), pp.
4803
4809
.
71.
Lee
,
S.
,
Kim
,
W.
, and
Yong
,
K.
,
2011
, “
Overcoming the Water Vulnerability of Electronic Devices: A Highly Water-Resistant Zno Nanodevice With Multifunctionality
,”
Adv. Mater.
,
23
(
38
), pp.
4398
4402
.
72.
Hao
,
X. Q.
,
Wang
,
L.
,
Lv
,
D. H.
,
Wang
,
Q. D.
,
Li
,
L.
,
He
,
N.
, and
Lu
,
B. H.
,
2015
, “
Fabrication of Hierarchical Structures for Stable Superhydrophobicity on Metallic Planar and Cylindrical Inner Surfaces
,”
Appl. Surf. Sci.
,
325
, pp.
151
159
.
73.
Yuen
,
P. K.
, and
DeRosa
,
M. E.
,
2011
, “
Flexible Microfluidic Devices With Three-Dimensional Interconnected Microporous Walls for Gas and Liquid Applications
,”
Lab Chip
,
11
(
19
), pp.
3249
3255
.
74.
Seo
,
J.
,
Lee
,
S. K.
,
Lee
,
J.
,
Lee
,
J. S.
,
Kwon
,
H.
,
Cho
,
S. W.
,
Ahn
,
J. H.
, and
Lee
,
T.
,
2015
, “
Path-Programmable Water Droplet Manipulations on an Adhesion Controlled Superhydrophobic Surface
,”
Sci. Rep.
,
5
p.
12326
.
You do not currently have access to this content.