Opto-thermophoretic manipulation is an emerging field, which exploits the thermophoretic migration of particles and colloidal species under a light-controlled temperature gradient field. The entropically favorable photon–phonon conversion and widely applicable heat-directed migration make it promising for low-power manipulation of variable particles in different fluidic environments. By exploiting an optothermal substrate, versatile opto-thermophoretic manipulation of colloidal particles and biological objects can be achieved via optical heating. In this paper, we summarize the working principles, concepts, and applications of the recently developed opto-thermophoretic techniques. Opto-thermophoretic trapping, tweezing, assembly, and printing of colloidal particles and biological objects are discussed thoroughly. With their low-power operation, simple optics, and diverse functionalities, opto-thermophoretic manipulation techniques will offer great opportunities in materials science, nanomanufacturing, life sciences, colloidal science, and nanomedicine.

References

References
1.
Ashkin
,
A.
,
1970
, “
Acceleration and Trapping of Particles by Radiation Pressure
,”
Phys. Rev. Lett.
,
24
(
4
), pp.
156
159
.
2.
Ashkin
,
A.
,
Dziedzic
,
J. M.
,
Bjorkholm
,
J. E.
, and
Chu
,
S.
,
1986
, “
Observation of a Single-Beam Gradient Force Optical Trap for Dielectric Particles
,”
Opt. Lett.
,
11
(
5
), pp.
288
290
.
3.
Urban
,
A. S.
,
Carretero-Palacios
,
S.
,
Lutich
,
A. A.
,
Lohmuller
,
T.
,
Feldmann
,
J.
, and
Jackel
,
F.
,
2014
, “
Optical Trapping and Manipulation of Plasmonic Nanoparticles: Fundamentals, Applications, and Perspectives
,”
Nanoscale
,
6
(
9
), pp.
4458
4474
.
4.
Ashkin
,
A.
,
Dziedzic
,
J. M.
, and
Yamane
,
T.
,
1987
, “
Optical Trapping and Manipulation of Single Cells Using Infrared Laser Beams
,”
Nature
,
330
(
6150
), pp.
769
771
.
5.
Ashkin
,
A.
, and
Dziedzic
,
J.
,
1987
, “
Optical Trapping and Manipulation of Viruses and Bacteria
,”
Science
,
235
(
4795
), pp.
1517
1520
.
6.
Burns
,
M. M.
,
Fournier
,
J.-M.
, and
Golovchenko
,
J. A.
,
1989
, “
Optical Binding
,”
Phys. Rev. Lett.
,
63
(
12
), pp.
1233
1236
.
7.
Mohanty
,
S. K.
,
Andrews
,
J. T.
, and
Gupta
,
P. K.
,
2004
, “
Optical Binding Between Dielectric Particles
,”
Opt. Express
,
12
(
12
), pp.
2746
2753
.
8.
Leung
,
S. J.
, and
Romanowski
,
M.
,
2012
, “
Molecular Catch and Release: Controlled Delivery Using Optical Trapping With Light-Responsive Liposomes
,”
Adv. Mater.
,
24
(
47
), pp.
6380
6383
.
9.
Maragò
,
O. M.
,
Jones
,
P. H.
,
Gucciardi
,
P. G.
,
Volpe
,
G.
, and
Ferrari
,
A. C.
,
2013
, “
Optical Trapping and Manipulation of Nanostructures
,”
Nat. Nanotechnol.
,
8
(
11
), pp.
807
819
.
10.
Applegate
,
R. W.
,
Squier
,
J.
,
Vestad
,
T.
,
Oakey
,
J.
, and
Marr
,
D. W. M.
,
2004
, “
Optical Trapping, Manipulation, and Sorting of Cells and Colloids in Microfluidic Systems With Diode Laser Bars
,”
Opt. Express
,
12
(
19
), pp.
4390
4398
.
11.
Grigorenko
,
A. N.
,
Roberts
,
N. W.
,
Dickinson
,
M. R.
, and
Zhang
,
Y.
,
2008
, “
Nanometric Optical Tweezers Based on Nanostructured Substrates
,”
Nat. Photonics
,
2
(
6
), pp.
365
370
.
12.
Babynina
,
A.
,
Fedoruk
,
M.
,
Kühler
,
P.
,
Meledin
,
A.
,
Döblinger
,
M.
, and
Lohmüller
,
T.
,
2016
, “
Bending Gold Nanorods With Light
,”
Nano Lett.
,
16
(
10
), pp.
6485
6490
.
13.
Rasmussen
,
M. B.
,
Oddershede
,
L. B.
, and
Siegumfeldt
,
H.
,
2008
, “
Optical Tweezers Cause Physiological Damage to Escherichia Coli and Listeria Bacteria
,”
Appl. Environ. Microbiol.
,
74
(
8
), pp.
2441
2446
.
14.
Odom
,
T. W.
, and
Schatz
,
G. C.
,
2011
, “
Introduction to Plasmonics
,”
Chem. Rev.
,
111
(
6
), pp.
3667
8
.
15.
Ozbay
,
E.
,
2006
, “
Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions
,”
Science
,
311
(
5758
), pp.
189
193
.
16.
Lindquist
,
N. C.
,
Nagpal
,
P.
,
McPeak
,
K. M.
,
Norris
,
D. J.
, and
Oh
,
S. H.
,
2012
, “
Engineering Metallic Nanostructures for Plasmonics and Nanophotonics
,”
Rep. Prog. Phys
,
75
(
3
), p.
036501
.
17.
Juan
,
M. L.
,
Righini
,
M.
, and
Quidant
,
R.
,
2011
, “
Plasmon Nano-Optical Tweezers
,”
Nat. Photonics
,
5
(
6
), pp.
349
356
.
18.
Yoo
,
D.
,
Gurunatha
,
K. L.
,
Choi
,
H.-K.
,
Mohr
,
D. A.
,
Ertsgaard
,
C. T.
,
Gordon
,
R.
, and
Oh
,
S.-H.
,
2018
, “
Low-Power Optical Trapping of Nanoparticles and Proteins With Resonant Coaxial Nanoaperture Using 10 Nm Gap
,”
Nano Lett.
,
18
(
6
), pp.
3637
3642
.
19.
Huft
,
P. R.
,
Kolbow
,
J. D.
,
Thweatt
,
J. T.
, and
Lindquist
,
N. C.
,
2017
, “
Holographic Plasmonic Nanotweezers for Dynamic Trapping and Manipulation
,”
Nano Lett.
,
17
(
12
), pp.
7920
7925
.
20.
Shoji
,
T.
, and
Tsuboi
,
Y.
,
2014
, “
Plasmonic Optical Tweezers Toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping
,”
J. Phys. Chem. Lett.
,
5
(
17
), pp.
2957
2967
.
21.
Zheng
,
Y.
,
Ryan
,
J.
,
Hansen
,
P.
,
Cheng
,
Y. T.
,
Lu
,
T. J.
, and
Hesselink
,
L.
,
2014
, “
Nano-Optical Conveyor Belt—Part II: Demonstration of Handoff Between Near-Field Optical Traps
,”
Nano Lett.
,
14
(
6
), pp.
2971
6
.
22.
Chiou
,
P. Y.
,
Ohta
,
A. T.
, and
Wu
,
M. C.
,
2005
, “
Massively Parallel Manipulation of Single Cells and Microparticles Using Optical Images
,”
Nature
,
436
(
7049
), pp.
370
2
.
23.
Wu
,
M. C.
,
2011
, “
Optoelectronic Tweezers
,”
Nat. Photonics
,
5
(
6
), pp.
322
324
.
24.
Park
,
S.
,
Pan
,
C.
,
Wu
,
T.-H.
,
Kloss
,
C.
,
Kalim
,
S.
,
Callahan
,
C. E.
,
Teitell
,
M.
, and
Chiou
,
E. P. Y.
,
2008
, “
Floating Electrode Optoelectronic Tweezers: Light-Driven Dielectrophoretic Droplet Manipulation in Electrically Insulating Oil Medium
,”
Appl. Phys. Lett.
,
92
(
15
), p.
151101
.
25.
Hsu
,
H-y.
,
Ohta
,
A. T.
,
Chiou
,
P.-Y.
,
Jamshidi
,
A.
,
Neale
,
S. L.
, and
Wu
,
M. C.
,
2010
, “
Phototransistor-Based Optoelectronic Tweezers for Dynamic Cell Manipulation in Cell Culture Media
,”
Lab Chip
,
10
(
2
), pp.
165
172
.
26.
Huang
,
K.-W.
,
Wu
,
Y.-C.
,
Lee
,
J.-A.
, and
Chiou
,
P.-Y.
,
2013
, “
Microfluidic Integrated Optoelectronic Tweezers for Single-Cell Preparation and Analysis
,”
Lab Chip
,
13
(
18
), pp.
3721
3727
.
27.
Lin
,
L.
,
Hill
,
E. H.
,
Peng
,
X.
, and
Zheng
,
Y.
,
2018
, “
Optothermal Manipulations of Colloidal Particles and Living Cells
,”
Acc. Chem. Res.
,
51
(
6
), pp.
1465
1474
.
28.
Zhao
,
C.
,
Xie
,
Y.
,
Mao
,
Z.
,
Zhao
,
Y.
,
Rufo
,
J.
,
Yang
,
S.
,
Guo
,
F.
,
Mai
,
J. D.
, and
Huang
,
T. J.
,
2014
, “
Theory and Experiment on Particle Trapping and Manipulation Via Optothermally Generated Bubbles
,”
Lab Chip
,
14
(
2
), pp.
384
391
.
29.
Xie
,
Y.
, and
Zhao
,
C.
,
2017
, “
An Optothermally Generated Surface Bubble and Its Applications
,”
Nanoscale
,
9
(
20
), pp.
6622
6631
.
30.
Parola
,
A.
, and
Piazza
,
R.
,
2004
, “
Particle Thermophoresis in Liquids
,”
Eur. Phys. J. E
,
15
(
3
), pp.
255
263
.
31.
Piazza
,
R.
, and
Parola
,
A.
,
2008
, “
Thermophoresis in Colloidal Suspensions
,”
J. Phys.: Condens. Matter
,
20
(
15
), p.
153102
.
32.
Reichl
,
M.
,
Herzog
,
M.
,
Götz
,
A.
, and
Braun
,
D.
,
2014
, “
Why Charged Molecules Move Across a Temperature Gradient: The Role of Electric Fields
,”
Phys. Rev. Lett.
,
112
(
19
), p.
198101
.
33.
Duhr
,
S.
, and
Braun
,
D.
,
2006
, “
Why Molecules Move along a Temperature Gradient
,”
Proc. Natl. Acad. Sci. U. S. A
,
103
(
52
), pp.
19678
19682
.
34.
Piazza
,
R.
,
2008
, “
Thermophoresis: Moving Particles With Thermal Gradients
,”
Soft Matter
,
4
(
9
), pp.
1740
1744
.
35.
Morozov
,
K. I.
,
1999
, “
Thermal Diffusion in Disperse Systems
,”
J. Exp. Theor. Phys.
,
88
(
5
), pp.
944
946
.
36.
Julien
,
M.
, and
Alois
,
W.
,
2009
, “
Thermophoresis at a Charged Surface: The Role of Hydrodynamic Slip
,”
J. Phys.: Condens. Matter
,
21
(
3
), p.
035103
.
37.
Putnam
,
S. A.
,
Cahill
,
D. G.
, and
Wong
,
G. C. L.
,
2007
, “
Temperature Dependence of Thermodiffusion in Aqueous Suspensions of Charged Nanoparticles
,”
Langmuir
,
23
(
18
), pp.
9221
9228
.
38.
Vigolo
,
D.
,
Brambilla
,
G.
, and
Piazza
,
R.
,
2007
, “
Thermophoresis of Microemulsion Droplets: Size Dependence of the Soret Effect
,”
Phys. Rev. E
,
75
(
Pt 1
), p.
040401
.
39.
Eslahian
,
K. A.
,
Majee
,
A.
,
Maskos
,
M.
, and
Würger
,
A.
,
2014
, “
Specific Salt Effects on Thermophoresis of Charged Colloids
,”
Soft Matter
,
10
(
12
), pp.
1931
1936
.
40.
Roberto
,
P.
,
2004
, “
Thermal Forces': Colloids in Temperature Gradients
,”
J. Phys.: Condens. Matter
,
16
(
38
), p.
S4195
.
41.
Iacopini
,
S.
, and
Piazza
,
R.
,
2003
, “
Thermophoresis in Protein Solutions
,”
EPL Europhys. Lett.
,
63
(
2
), p.
247
.
42.
Gordon
,
J. P.
,
Leite
,
R. C. C.
,
Moore
,
R. S.
,
Porto
,
S. P. S.
, and
Whinnery
,
J. R.
,
1965
, “
Long‐Transient Effects in Lasers With Inserted Liquid Samples
,”
J. Appl. Phys.
,
36
(
1
), pp.
3
8
.
43.
Rusconi
,
R.
,
Isa
,
L.
, and
Piazza
,
R.
,
2004
, “
Thermal-Lensing Measurement of Particle Thermophoresis in Aqueous Dispersions
,”
J. Opt. Soc. Am. B
,
21
(
3
), pp.
605
616
.
44.
Giglio
,
M.
, and
Vendramini
,
A.
,
1974
, “
Thermal Lens Effect in a Binary Liquid Mixture: A New Effect
,”
Appl. Phys. Lett.
,
25
(
10
), pp.
555
557
.
45.
Duhr
,
S.
,
Arduini
,
S.
, and
Braun
,
D.
,
2004
, “
Thermophoresis of DNA Determined by Microfluidic Fluorescence
,”
Eur. Phys. J. E
,
15
(
3
), pp.
277
286
.
46.
Helden
,
L.
,
Eichhorn
,
R.
, and
Bechinger
,
C.
,
2015
, “
Direct Measurement of Thermophoretic Forces
,”
Soft Matter
,
11
(
12
), pp.
2379
2386
.
47.
Piazza
,
R.
, and
Guarino
,
A.
,
2002
, “
Soret Effect in Interacting Micellar Solutions
,”
Phys. Rev. Lett.
,
88
(
20
), p.
208302
.
48.
Iacopini
,
S.
,
Rusconi
,
R.
, and
Piazza
,
R.
,
2006
, “
The “Macromolecular Tourist”: Universal Temperature Dependence of Thermal Diffusion in Aqueous Colloidal Suspensions
,”
Eur. Phys. J. E
,
19
(
1
), pp.
59
67
.
49.
Dhont
,
J. K. G.
,
2004
, “
Thermodiffusion of Interacting Colloids—I: A Statistical Thermodynamics Approach
,”
J. Chem. Phys.
,
120
(
3
), pp.
1632
1641
.
50.
Dhont
,
J. K. G.
,
2004
, “
Thermodiffusion of Interacting Colloids—II: A Microscopic Approach
,”
J. Chem. Phys.
,
120
(
3
), pp.
1642
1653
.
51.
Duhr
,
S.
, and
Braun
,
D.
,
2006
, “
Thermophoretic Depletion Follows Boltzmann Distribution
,”
Phys. Rev. Lett.
,
96
(
16
), p.
168301
.
52.
Braibanti
,
M.
,
Vigolo
,
D.
, and
Piazza
,
R.
,
2008
, “
Does Thermophoretic Mobility Depend on Particle Size?
,”
Phys. Rev. Lett.
,
100
(
10
), p.
108303
.
53.
Wiegand
,
S.
,
2004
, “
Thermal Diffusion in Liquid Mixtures and Polymer Solutions
,”
J. Phys.: Condens. Matter
,
16
(
10
), p.
R357
.
54.
Braun
,
D.
, and
Libchaber
,
A.
,
2002
, “
Trapping of DNA by Thermophoretic Depletion and Convection
,”
Phys. Rev. Lett.
,
89
(
18
), p.
188103
.
55.
Weinert
,
F. M.
, and
Braun
,
D.
,
2009
, “
An Optical Conveyor for Molecules
,”
Nano Lett.
,
9
(
12
), pp.
4264
4267
.
56.
Zhang
,
M.
,
Ngampeerapong
,
C.
,
Redin
,
D.
,
Ahmadian
,
A.
,
Sychugov
,
I.
, and
Linnros
,
J.
,
2018
, “
Thermophoresis-Controlled Size-Dependent DNA Translocation Through an Array of Nanopores
,”
ACS Nano
,
12
(
5
), pp.
4574
4582
.
57.
Wienken
,
C. J.
,
Baaske
,
P.
,
Rothbauer
,
U.
,
Braun
,
D.
, and
Duhr
,
S.
,
2010
, “
Protein-Binding Assays in Biological Liquids Using Microscale Thermophoresis
,”
Nat. Commun
,
1
(
7
), p.
100
.
58.
Jerabek-Willemsen
,
M.
,
André
,
T.
,
Wanner
,
R.
,
Roth
,
H. M.
,
Duhr
,
S.
,
Baaske
,
P.
, and
Breitsprecher
,
D.
,
2014
, “
Microscale Thermophoresis: Interaction Analysis and Beyond
,”
J. Mol. Struct.
,
1077
, pp.
101
113
.
59.
Jiang
,
H.-R.
,
Wada
,
H.
,
Yoshinaga
,
N.
, and
Sano
,
M.
,
2009
, “
Manipulation of Colloids by a Nonequilibrium Depletion Force in a Temperature Gradient
,”
Phys. Rev. Lett.
,
102
(
20
), p.
208301
.
60.
Anderson
,
J. L.
, and
Prieve
,
D. C.
,
1984
, “
Diffusiophoresis: Migration of Colloidal Particles in Gradients of Solute Concentration
,”
Sep. Purif. Methods
,
13
(
1
), pp.
67
103
.
61.
Zhao
,
K.
, and
Mason
,
T. G.
,
2007
, “
Directing Colloidal Self-Assembly Through Roughness-Controlled Depletion Attractions
,”
Phys. Rev. Lett.
,
99
(
26
), p.
268301
.
62.
Baranov
,
D.
,
Fiore
,
A.
,
van Huis
,
M.
,
Giannini
,
C.
,
Falqui
,
A.
,
Lafont
,
U.
,
Zandbergen
,
H.
,
Zanella
,
M.
,
Cingolani
,
R.
, and
Manna
,
L.
,
2010
, “
Assembly of Colloidal Semiconductor Nanorods in Solution by Depletion Attraction
,”
Nano Lett.
,
10
(
2
), pp.
743
749
.
63.
Edwards
,
T. D.
, and
Bevan
,
M. A.
,
2012
, “
Depletion-Mediated Potentials and Phase Behavior for Micelles, Macromolecules, Nanoparticles, and Hydrogel Particles
,”
Langmuir
,
28
(
39
), pp.
13816
13823
.
64.
Deng
,
H.-D.
,
Li
,
G.-C.
,
Liu
,
H.-Y.
,
Dai
,
Q.-F.
,
Wu
,
L.-J.
,
Lan
,
S.
,
Gopal
,
A. V.
,
Trofimov
,
V. A.
, and
Lysak
,
T. M.
,
2012
, “
Assembling of Three-Dimensional Crystals by Optical Depletion Force Induced by a Single Focused Laser Beam
,”
Opt. Express
,
20
(
9
), pp.
9616
9623
.
65.
Majee
,
A.
, and
Würger
,
A.
,
2012
, “
Charging of Heated Colloidal Particles Using the Electrolyte Seebeck Effect
,”
Phys. Rev. Lett.
,
108
(
11
), p.
118301
.
66.
Putnam
,
S. A.
, and
Cahill
,
D. G.
,
2005
, “
Transport of Nanoscale Latex Spheres in a Temperature Gradient
,”
Langmuir
,
21
(
12
), pp.
5317
5323
.
67.
Würger
,
A.
,
2008
, “
Transport in Charged Colloids Driven by Thermoelectricity
,”
Phys. Rev. Lett.
,
101
(
10
), p.
108302
.
68.
Braun
,
M.
, and
Cichos
,
F.
,
2013
, “
Optically Controlled Thermophoretic Trapping of Single Nano-Objects
,”
ACS Nano
,
7
(
12
), pp.
11200
11208
.
69.
Braun
,
M.
,
Wurger
,
A.
, and
Cichos
,
F.
,
2014
, “
Trapping of Single Nano-Objects in Dynamic Temperature Fields
,”
Phys. Chem. Chem. Phys.
,
16
(
29
), pp.
15207
15213
.
70.
Braun
,
M.
,
Bregulla
,
A. P.
,
Günther
,
K.
,
Mertig
,
M.
, and
Cichos
,
F.
,
2015
, “
Single Molecules Trapped by Dynamic Inhomogeneous Temperature Fields
,”
Nano Lett.
,
15
(
8
), pp.
5499
5505
.
71.
Lin
,
L.
,
Peng
,
X.
,
Mao
,
Z.
,
Wei
,
X.
,
Xie
,
C.
, and
Zheng
,
Y.
,
2017
, “
Interfacial-Entropy-Driven Thermophoretic Tweezers
,”
Lab Chip
,
17
(
18
), pp.
3061
3070
.
72.
Kang
,
Z.
,
Chen
,
J.
,
Wu
,
S.-Y.
,
Chen
,
K.
,
Kong
,
S.-K.
,
Yong
,
K.-T.
, and
Ho
,
H.-P.
,
2015
, “
Trapping and Assembling of Particles and Live Cells on Large-Scale Random Gold Nano-Island Substrates
,”
Sci. Rep.
,
5
, p.
9978
.
73.
Lin
,
L.
,
Peng
,
X.
,
Mao
,
Z.
,
Li
,
W.
,
Yogeesh
,
M. N.
,
Rajeeva
,
B. B.
,
Perillo
,
E. P.
,
Dunn
,
A. K.
,
Akinwande
,
D.
, and
Zheng
,
Y.
,
2016
, “
Bubble-Pen Lithography
,”
Nano Lett.
,
16
(
1
), pp.
701
708
.
74.
Chen
,
J.
,
Cong
,
H.
,
Loo
,
F.-C.
,
Kang
,
Z.
,
Tang
,
M.
,
Zhang
,
H.
,
Wu
,
S.-Y.
,
Kong
,
S.-K.
, and
Ho
,
H.-P.
,
2016
, “
Thermal Gradient Induced Tweezers for the Manipulation of Particles and Cells
,”
Sci. Rep.
,
6
, p.
35814
.
75.
Peng
,
X.
,
Lin
,
L.
,
Hill
,
E. H.
,
Kunal
,
P.
,
Humphrey
,
S. M.
, and
Zheng
,
Y.
,
2018
, “
Optothermophoretic Manipulation of Colloidal Particles in Nonionic Liquids
,”
J. Phys. Chem. C
(epub).
76.
Lin
,
L.
,
Peng
,
X.
,
Wei
,
X.
,
Mao
,
Z.
,
Xie
,
C.
, and
Zheng
,
Y.
,
2017
, “
Thermophoretic Tweezers for Low-Power and Versatile Manipulation of Biological Cells
,”
ACS Nano
,
11
(
3
), pp.
3147
3154
.
77.
Lin
,
L.
,
Wang
,
M.
,
Peng
,
X.
,
Lissek
,
E. N.
,
Mao
,
Z.
,
Scarabelli
,
L.
,
Adkins
,
E.
,
Coskun
,
S.
,
Unalan
,
H. E.
,
Korgel
,
B. A.
,
Liz-Marzán
,
L. M.
,
Florin
,
E.-L.
, and
Zheng
,
Y.
,
2018
, “
Opto-Thermoelectric Nanotweezers
,”
Nat. Photonics
,
12
(
4
), pp.
195
201
.
78.
Lin
,
L.
,
Peng
,
X.
,
Wang
,
M.
,
Scarabelli
,
L.
,
Mao
,
Z.
,
Liz-Marzan
,
L. M.
,
Becker
,
M. F.
, and
Zheng
,
Y.
,
2016
, “
Light-Directed Reversible Assembly of Plasmonic Nanoparticles Using Plasmon-Enhanced Thermophoresis
,”
ACS Nano
,
10
(
10
), pp.
9659
−–
9668
.
79.
Lin
,
L.
,
Zhang
,
J.
,
Peng
,
X.
,
Wu
,
Z.
,
Coughlan
,
A. C. H.
,
Mao
,
Z.
,
Bevan
,
M. A.
, and
Zheng
,
Y.
,
2017
, “
Opto-Thermophoretic Assembly of Colloidal Matter
,”
Sci. Adv.
,
3
(
9
), p.
e1700458
.
80.
Peng
,
X.
,
Li
,
J.
,
Lin
,
L.
,
Liu
,
Y.
, and
Zheng
,
Y.
,
2018
, “
Opto-Thermophoretic Manipulation and Construction of Colloidal Superstructures in Photocurable Hydrogels
,”
ACS Appl. Nano Mater
,
1
(
8
), pp.
3998
4004
.
81.
Lin
,
L.
,
Peng
,
X.
, and
Zheng
,
Y.
,
2017
, “
Reconfigurable Opto-Thermoelectric Printing of Colloidal Particles
,”
Chem. Commun.
,
53
(
53
), pp.
7357
7360
.
You do not currently have access to this content.