In this work, nanosecond laser machining is used to fabricate hydrophobic 17-4 PH stainless steel surfaces with microscale and submicron structures. Four surface structures were designed, with microscale channels and pillars (100 μm pitch size) of uniform heights (100 μm) or alternating heights (between 100 μm and 50 μm). During fabrication, the high-power laser beams also created submicron features on top of the microscale ones, leading to hierarchical, multiscale surface structures. Detailed wettability analysis was conducted on the fabricated samples. Measured static contact angles of water on these surfaces are over 130 deg without any coating, compared to ∼70 deg on the original steel surface before laser machining. Slightly lower contact angle hysteresis was also observed on the laser machined surfaces. Overall, these results agree with a simple Cassie–Baxter model for wetting that assumes only fractional surface area contact between the droplet and the surface. This work demonstrates that steel surfaces machined with relatively inexpensive nanosecond laser can achieve excellent hydrophobicity even with simple microstructural designs.

References

References
1.
Feng
,
L.
,
Li
,
S.
,
Li
,
Y.
,
Li
,
H.
,
Zhang
,
L.
,
Zhai
,
J.
, and
Zhu
,
D.
,
2002
, “
Super‐Hydrophobic Surfaces: From Natural to Artificial
,”
Adv. Mater.
,
14
(
24
), pp.
1857
1860
.
2.
Mittal
,
K. L.
(ed.),
2006
,
Contact Angle, Wettability and Adhesion
, Vol.
4
,
CRC Press
,
Boca Raton, FL
.
3.
Birjandi
,
F. C.
, and
Sargolzaei
,
J.
,
2014
, “
Super-Non-Wettable Surfaces: A Review
,”
Colloids Surf. A
,
448
, pp.
93
106
.
4.
Nishimoto
,
S.
, and
Bhushan
,
B.
,
2013
, “
Bioinspired Self-Cleaning Surfaces With Superhydrophobicity, Superoleophobicity, and Superhydrophilicity
,”
Rsc Adv.
,
3
(
3
), pp.
671
690
.
5.
Bhushan
,
B.
,
Jung
,
Y. C.
, and
Koch
,
K.
,
2009
, “
Micro-, Nano-and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion
,”
Philos. Trans. R. Soc. London A
,
367
(
1894
), pp.
1631
1672
.
6.
Truesdell
,
R.
,
Mammoli
,
A.
,
Vorobieff
,
P.
,
van Swol
,
F.
, and
Brinker
,
C. J.
,
2006
, “
Drag Reduction on a Patterned Superhydrophobic Surface
,”
Phys. Rev. Lett.
,
97
(
4
), p.
044504
.
7.
Daniello
,
R. J.
,
Waterhouse
,
N. E.
, and
Rothstein
,
J. P.
,
2009
, “
Drag Reduction in Turbulent Flows Over Superhydrophobic Surfaces
,”
Phys. Fluids (1994-Present)
,
21
(
8
), p.
085103
.
8.
Zhang
,
S.
,
Ouyang
,
X.
,
Li
,
J.
,
Gao
,
S.
,
Han
,
S.
,
Liu
,
L.
, and
Wei
,
H.
,
2014
, “
Underwater Drag Reducing Effect of Superhydrophobic Submarine Model
,”
Langmuir
,
31
(
1
), pp.
587
593
.
9.
Cao
,
L.
,
Jones
,
A. K.
,
Sikka
,
V. K.
,
Wu
,
J.
, and
Gao
,
D.
,
2009
, “
Anti-Icing Superhydrophobic Coatings
,”
Langmuir
,
25
(
21
), pp.
12444
12448
.
10.
Farhadi
,
S.
,
Farzaneh
,
M.
, and
Kulinich
,
S. A.
,
2011
, “
Anti-Icing Performance of Superhydrophobic Surfaces
,”
Appl. Surf. Sci.
,
257
(
14
), pp.
6264
6269
.
11.
Ruan
,
M.
,
Li
,
W.
,
Wang
,
B.
,
Deng
,
B.
,
Ma
,
F.
, and
Yu
,
Z.
,
2013
, “
Preparation and Anti-Icing Behavior of Superhydrophobic Surfaces on Aluminum Alloy Substrates
,”
Langmuir
,
29
(
27
), pp.
8482
8491
.
12.
Fihri
,
A.
,
Bovero
,
E.
,
Shahrani
,
A.
,
Ghamdi
,
A.
, and
Alabedi
,
G.
,
2017
, “
Recent Progress in Superhydrophobic Coatings Used for Steel Protection: A Review
,”
Colloids Surf. A
,
520
, pp.
378
390
.
13.
Yang
,
H.
,
Pi
,
P.
,
Cai
,
Z. Q.
,
Wen
,
X.
,
Wang
,
X.
,
Cheng
,
J.
, and
Yang
,
Z. R.
,
2010
, “
Facile Preparation of Super-Hydrophobic and Super-Oleophilic Silica Film on Stainless Steel Mesh Via Sol–Gel Process
,”
Appl. Surf. Sci.
,
256
(
13
), pp.
4095
4102
.
14.
Gurav
,
A. B.
,
Latthe
,
S. S.
,
Kappenstein
,
C.
,
Mukherjee
,
S. K.
,
Rao
,
A. V.
, and
Vhatkar
,
R. S.
,
2011
, “
Porous Water Repellent Silica Coatings on Glass by Sol–Gel Method
,”
J. Porous Mater.
,
18
(
3
), pp.
361
367
.
15.
Yu
,
Q.
,
Zeng
,
Z.
,
Zhao
,
W.
,
Li
,
H.
,
Wu
,
X.
, and
Xue
,
Q.
,
2013
, “
Patterned Tailored Hydrophobic Films Designed by Synergy Effect of Electrochemical Deposition and Chemical Deposition
,”
Chem. Commun.
,
49
(
24
), pp.
2424
2426
.
16.
He
,
G.
, and
Wang
,
K.
,
2011
, “
The Super Hydrophobicity of ZnO Nanorods Fabricated by Electrochemical Deposition Method
,”
Appl. Surf. Sci.
,
257
(
15
), pp.
6590
6594
.
17.
Ishizaki
,
T.
,
Hieda
,
J.
,
Saito
,
N.
,
Saito
,
N.
, and
Takai
,
O.
,
2010
, “
Corrosion Resistance and Chemical Stability of Super-Hydrophobic Film Deposited on Magnesium Alloy AZ31 by Microwave Plasma-Enhanced Chemical Vapor Deposition
,”
Electrochim. Acta
,
55
(
23
), pp.
7094
7101
.
18.
Sun
,
S. X.
,
Xie
,
R.
,
Wang
,
X. X.
,
Wen
,
G. Q.
,
Liu
,
Z.
,
Wang
,
W.
, and
Chu
,
L. Y.
,
2015
, “
Fabrication of Nanofibers With Phase-Change Core and Hydrophobic Shell, Via Coaxial Electrospinning Using Nontoxic Solvent
,”
J. Mater. Sci.
,
50
(
17
), pp.
5729
5738
.
19.
Miyauchi
,
Y.
,
Ding
,
B.
, and
Shiratori
,
S.
,
2006
, “
Fabrication of a Silver-Ragwort-Leaf-Like Super-Hydrophobic Micro/Nanoporous Fibrous Mat Surface by Electrospinning
,”
Nanotechnology
,
17
(
20
), p.
5151
.
20.
Cassie
,
A. B. D.
, and
Baxter
,
S.
,
1944
, “
Wettability of Porous Surfaces
,”
Trans. Faraday Soc.
,
40
, pp.
546
551
.
21.
You
,
X.
,
Ye
,
C.
, and
Guo
,
P.
,
2017
, “
Study of Microscale Three-Dimensional Printing Using Near-Field Melt Electrospinning
,”
ASME J. Micro- Nano-Manuf.
,
5
(
4
), p.
040901
.
22.
Jeong
,
H. E.
,
Kwak
,
M. K.
,
Park
,
C. I.
, and
Suh
,
K. Y.
,
2009
, “
Wettability of Nanoengineered Dual-Roughness Surfaces Fabricated by UV-Assisted Capillary Force Lithography
,”
J. Colloid Interface Sci.
,
339
(
1
), pp.
202
207
.
23.
Shiu
,
J. Y.
,
Kuo
,
C. W.
,
Chen
,
P.
, and
Mou
,
C. Y.
,
2004
, “
Fabrication of Tunable Superhydrophobic Surfaces by Nanosphere Lithography
,”
Chem. Mater.
,
16
(
4
), pp.
561
564
.
24.
Yuan
,
H.
,
Cambron
,
S. D.
,
Crain
,
M. M.
, and
Keynton
,
R. S.
,
2016
, “
Fabrication of a Micro/Nanofluidic Platform Via Three-Axis Robotic Dispensing System
,”
ASME J. Micro- Nano-Manuf.
,
4
(
4
), p.
041005
.
25.
Zhao
,
Y.
,
Tang
,
Y.
,
Wang
,
X.
, and
Lin
,
T.
,
2010
, “
Superhydrophobic Cotton Fabric Fabricated by Electrostatic Assembly of Silica Nanoparticles and Its Remarkable Buoyancy
,”
Appl. Surf. Sci.
,
256
(
22
), pp.
6736
6742
.
26.
Li
,
X.
,
Du
,
X.
, and
He
,
J.
,
2010
, “
Self-Cleaning Antireflective Coatings Assembled From Peculiar Mesoporous Silica Nanoparticles
,”
Langmuir
,
26
(
16
), pp.
13528
13534
.
27.
Wong
,
Y. S.
,
Rahman
,
M.
,
Lim
,
H. S.
,
Han
,
H.
, and
Ravi
,
N.
,
2003
, “
Investigation of Micro-EDM Material Removal Characteristics Using Single RC-Pulse Discharges
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
303
307
.
28.
Bae
,
W. G.
,
Song
,
K. Y.
,
Rahmawan
,
Y.
,
Chu
,
C. N.
,
Kim
,
D.
,
Chung
,
D. K.
, and
Suh
,
K. Y.
,
2012
, “
One-Step Process for Superhydrophobic Metallic Surfaces by Wire Electrical Discharge Machining
,”
ACS Appl. Mater. Interfaces
,
4
(
7
), pp.
3685
3691
.
29.
Chen
,
F.
,
Zhang
,
D.
,
Yang
,
Q.
,
Yong
,
J.
,
Du
,
G.
,
Si
,
J.
, and
Hou
,
X.
,
2013
, “
Bioinspired Wetting Surface Via Laser Microfabrication
,”
ACS Appl. Mater. Interfaces
,
5
(
15
), pp.
6777
6792
.
30.
Martínez-Calderon
,
M.
,
Rodríguez
,
A.
,
Dias-Ponte
,
A.
,
Morant-Minana
,
M. C.
,
Gómez-Aranzadi
,
M.
, and
Olaizola
,
S. M.
,
2016
, “
Femtosecond Laser Fabrication of Highly Hydrophobic Stainless Steel Surface With Hierarchical Structures Fabricated by Combining Ordered Microstructures and LIPSS
,”
Appl. Surf. Sci.
,
374
, pp.
81
89
.
31.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.
32.
Wenzel
,
R. N.
,
1949
, “
Surface Roughness and Contact Angle
,”
J. Phys. Chem.
,
53
(
9
), pp.
1466
1467
.
33.
Bhushan
,
B.
, and
Jung
,
Y. C.
,
2006
, “
Micro-and Nanoscale Characterization of Hydrophobic and Hydrophilic Leaf Surfaces
,”
Nanotechnology
,
17
(
11
), p.
2758
.
You do not currently have access to this content.