The prediction accuracy of the stability boundary in the machining process depends upon accurate estimation of cutting tool-tip dynamics. Note that the experimental modal analysis using direct impact at miniature end mill (typically 50–500 μm in diameter) is not feasible as it can result in tool failure. Consequently, alternative techniques such as experimental modal analysis using reciprocity theory and frequency-based receptance coupling substructure analysis (RCSA) have been used extensively for determining tool-tip dynamics. The experimental approach based on reciprocity theory assumes that the structure is symmetric (cross frequency response functions (FRFs) are same between two points of interest in a structure). RCSA requires a very fine frequency resolution and matrix inversion, which can lead to computational complexities. In addition, RCSA takes into account the FRFs only at the interface and free end, which can induce errors. Owing to these issues with existing approaches, this paper proposes a free-interface component mode synthesis (CMS) approach for estimation of micro-end mill dynamics. The effect of machine tool compliance including the collet–tool interface has been included for estimation of micro-end mill dynamics via a free-interface CMS approach wherein the experimental and analytical mode shapes are coupled. The predicted micro-end mill dynamics have been compared with RCSA and experimental modal analysis using reciprocity theory. Finally, the stability lobe diagrams for high-speed micromilling of Ti6Al4V has been made using the tool-tip dynamics from CMS, RCSA, and experimental technique using reciprocity theory and validated against experimental measurements for onset of instability.

References

References
1.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
2.
Weule
,
H.
,
Hüntrup
,
V.
, and
Tritschler
,
H.
,
2001
, “
Micro-Cutting of Steel to Meet New Requirements in Miniaturization
,”
CIRP Ann. Manuf. Technol.
,
50
(
1
), pp.
61
64
.
3.
Vogler
,
M. P.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2004
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part I: Surface Generation
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
685
694
.
4.
Jin
,
X.
, and
Altintas
,
Y.
,
2013
, “
Chatter Stability Model of Micro-Milling With Process Damping
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031011
.
5.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2017
, “
Modeling of Dynamic Instability Via Segmented Cutting Coefficients and Chatter Onset Detection in High-Speed Micromilling of Ti6Al4V
,”
ASME J. Manuf. Sci. Eng.
,
139
(
5
), p.
051005
.
6.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part II: Model Validation and Application
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031120
.
7.
Mascardelli
,
B. A.
,
Park
,
S. S.
, and
Freiheit
,
T.
,
2008
, “
Substructure Coupling of Microend Mills to Aid in the Suppression of Chatter
,”
ASME J. Manuf. Sci. Eng.
,
130
(
1
), p.
011010
.
8.
Malekian
,
M.
,
Park
,
S. S.
, and
Jun
,
M. B.
,
2009
, “
Modeling of Dynamic Micro-Milling Cutting Forces
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
586
598
.
9.
Rahnama
,
R.
,
Sajjadi
,
M.
, and
Park
,
S. S.
,
2009
, “
Chatter Suppression in Micro End Milling With Process Damping
,”
J. Mater. Process. Technol.
,
209
(
17
), pp.
5766
5776
.
10.
Cheng
,
C. H.
,
Schmitz
,
T. L.
,
Arakere
,
N.
, and
Duncan
,
G. S.
,
2005
, “
An Approach for Micro End Mill Frequency Response Predictions
,”
ASME
Paper No. IMECE2005-81215.
11.
Graham
,
E.
,
Mehrpouya
,
M.
,
Nagamune
,
R.
, and
Park
,
S. S.
,
2014
, “
Robust Prediction of Chatter Stability in Micro Milling Comparing Edge Theorem and LMI
,”
CIRP J. Manuf. Sci. Technol.
,
7
(
1
), pp.
29
39
.
12.
Xiaohong
,
L.
,
Zhenyuan
,
J.
,
Haixing
,
Z.
,
Shengqian
,
L.
,
Yixuan
,
F.
, and
Liang
,
S. Y.
,
2017
, “
Tool Point Frequency Response Prediction for Micromilling by Receptance Coupling Substructure Analysis
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071004
.
13.
Filiz
,
S.
, and
Ozdoganlar
,
O. B.
,
2008
, “
Microendmill Dynamics Including the Actual Fluted Geometry and Setup Errors—Part I: Model Development and Numerical Solution
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031119
.
15.
Koplow
,
M. A.
,
Bhattacharyya
,
A.
, and
Mann
,
B. P.
,
2006
, “
Closed Form Solutions for the Dynamic Response of Euler–Bernoulli Beams With Step Changes in Cross Section
,”
J. Sound Vib.
,
295
(
1–2
), pp.
214
225
.
16.
Gruber
,
F. M.
, and
Rixen
,
D. J.
,
2016
, “
Evaluation of Substructure Reduction Techniques With Fixed and Free Interfaces
,”
Strojniški Vestnik-J. Mech. Eng.
,
62
(
7–8
), pp.
452
462
.
17.
Roettgen
,
D.
,
Seeger
,
B.
,
Tai
,
W. C.
,
Baek
,
S.
,
Dossogne
,
T.
,
Allen
,
M.
,
Kuether
,
R.
,
Brake
,
M. R.
, and
Mayes
,
R.
,
2016
, “
A Comparison of Reduced Order Modeling Techniques Used in Dynamic Substructuring
,”
Dynamics of Coupled Structures
, Vol.
4
,
Springer International Publishing
, Cham, Switzerland, pp.
511
528
.
18.
Mayes
,
R. L.
, and
Allen
,
M. S.
,
2007
, “
Comparison of FRF and Modal Methods for Combining Experimental and Analytical Substructures
,” Sandia National Laboratories (SNL-NM), Albuquerque, NM, Report No.
SAND2007-0277C
.http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.503.6833&rep=rep1&type=pdf
19.
Martinez
,
D. R.
,
Miller
,
A. K.
,
Gregory
,
D. L.
, and
Carne
,
T. G.
,
1984
, “
Combined Experimental Analytical Modelling Using Component Mode Synthesis
,”
AIAA
Paper No. 1984-941.
20.
Allen
,
M. S.
,
Kammer
,
D. C.
, and
Mayes
,
R. L.
,
2010
, “
Uncertainty in Experimental/Analytical Substructuring Predictions: A Review With Illustrative Examples
,”
International Conference on Noise and Vibration Engineering
(
ISMA
), Leuven, Belgium, Sept. 20–22, pp. 2–13.https://pdfs.semanticscholar.org/5784/e197846a181af2fb7896d00b39b710f03d17.pdf
21.
Mayes
,
R. L.
,
Allen
,
M. S.
, and
Kammer
,
D. C.
,
2012
, “
Eliminating Indefinite Mass Matrices With the Transmission Simulator Method of Substructuring
,”
Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics
, Vol.
2
,
Springer
,
New York
, pp.
21
31
.
22.
Mayes
,
R. L.
,
2012
, “
Tutorial on Experimental Dynamic Substructuring Using the Transmission Simulator Method
,”
Topics in Experimental Dynamics Substructuring and Wind Turbine Dynamics
, Vol.
2
,
Springer
,
New York
, pp.
1
9
.
23.
Sattinger
,
S. S.
,
1980
, “
Method for Experimentally Determining Rotational Mobilities of Structures
,”
Shock Vib. Bull.
,
50
, pp. 17–27.https://www.osti.gov/biblio/5688696
24.
Schmitz
,
T. L.
, and
Duncan
,
G. S.
,
2005
, “
Three-Component Receptance Coupling Substructure Analysis for Tool Point Dynamics Prediction
,”
ASME J. Manuf. Sci. Eng.
,
127
(
4
), pp.
781
790
.
25.
de Klerk
,
D.
,
Rixen
,
D.
,
Voormeeren
,
S. N.
, and
Pasteuning
,
F.
,
2008
, “
Solving the RDoF Problem in Experimental Dynamic Substructuring
,”
26th International Modal Analysis Conference (IMAC XXVI)
, Orlando, FL, Paper No.
129
http://3me.home.tudelft.nl/fileadmin/Faculteit/3mE/Over_de_faculteit/Afdelingen/PME/About_PME/Staff/Personal_Pages/Klerk,_D._de/doc/DEKLERK.2008.EMPC.pdf.
26.
Gibbons
,
T. J.
,
Öztürk
,
E.
, and
Sims
,
N. D.
,
2018
, “
Rotational Degree-of-Freedom Synthesis: An Optimised Finite Difference Method for Non-Exact Data
,”
J. Sound Vib.
,
412
, pp.
207
221
.
27.
Kwon
,
Y. W.
, and
Bang
,
H.
,
2000
,
The Finite Element Method Using MATLAB
,
CRC Press
, Boca Raton, FL.
28.
Goldman
,
R. L.
,
1969
, “
Vibration Analysis by Dynamic Partitioning
,”
AIAA J.
,
7
(
6
), pp.
1152
1154
.
29.
MacNeal
,
R. H.
,
1971
, “
A Hybrid Method of Component Mode Synthesis
,”
Comput. Struct.
,
1
(
4
), pp.
581
601
.
30.
Rubin
,
S.
,
1975
, “
Improved Component-Mode Representation for Structural Dynamic Analysis
,”
AIAA J.
,
13
(
8
), pp.
995
1006
.
31.
Hou
,
S. N.
,
1969
, “
Review of Modal Synthesis Techniques and a New Approach
,”
Shock Vib. Bull.
,
40
(
4
), pp.
25
39
. http://www.dtic.mil/get-tr-doc/pdf?AD=AD0723343#page=39.
32.
Craig
,
R. R.
, Jr.
, and
Chang
,
C. J.
,
1977
, “
Substructure Coupling for Dynamic Analysis and Testing
,” National Aeronautics and Space Administration, Washington, DC, Final Report No.
NASA-CR-2781
.https://ntrs.nasa.gov/search.jsp?R=19770010568
33.
Craig
,
R. R.
, and
Kurdila
,
A. J.
,
2006
,
Fundamentals of Structural Dynamics
,
Wiley
, Canada.
34.
Maia
,
N. M. M.
,
1988
, “
Extraction of Valid Modal Properties From Measured Data in Structural Vibrations
,”
Doctoral dissertation
, Imperial College London, University of London, London.https://www.imperial.ac.uk/media/imperial-college/research-centres-and-groups/dynamics/40377708.PDF
35.
Chen
,
W. H.
, and
Cherng
,
J. S.
,
1985
, “
Modal Synthesis Via Combined Experimental and Finite Element Techniques With Consideration of Rotational Effects
,”
J. Sound Vib.
,
103
(
1
), pp.
1
11
.
36.
Fu
,
Z. F.
, and
He
,
J.
,
2001
, “
Modal Analysis Methods-Frequency Domain
,”
Modal Analysis
,
Butterworth-Heinemann
, Oxford, UK, Chap. 8.
37.
Altintas
,
Y.
,
2000
,
Manufacturing Automation: Metal Cutting Mechanics, Machine Tool Vibrations, and CNC Design
,
Cambridge University Press
, New York.
38.
Law
,
M.
,
Phani
,
A. S.
, and
Altintas
,
Y.
,
2013
, “
Position-Dependent Multibody Dynamic Modeling of Machine Tools Based on Improved Reduced Order Models
,”
ASME J. Manuf. Sci. Eng.
,
135
(
2
), p.
021008
.
39.
Fu
,
Z. F.
, and
He
,
J.
,
2001
, “
Applications of Modal Analysis on Real Structures
,”
Modal Analysis
,
Butterworth-Heinemann
, Oxford, UK, Chap. 13.
40.
Kivanc
,
E. B.
, and
Budak
,
E.
,
2003
, “
Development of Analytical Endmill Deflection and Dynamic Models
,”
ASME
Paper No. IMECE2003-42301.
41.
Schmitz
,
T. L.
, and
Donalson
,
R. R.
,
2000
, “
Predicting High-Speed Machining Dynamics by Substructure Analysis
,”
CIRP Ann. Manuf. Technol.
,
49
(
1
), pp.
303
308
.
42.
Park
,
S. S.
,
Altintas
,
Y.
, and
Movahhedy
,
M.
,
2003
, “
Receptance Coupling for End Mill
,”
Int. J. Mach. Tools Manuf.
,
43
(
9
), pp.
889
896
.
43.
Singh
,
K. K.
,
Kartik
,
V.
, and
Singh
,
R.
,
2015
, “
Modeling Dynamic Stability in High-Speed Micromilling of Ti–6Al–4V via Velocity and Chip Load Dependent Cutting Coefficients
,”
Int. J. Mach. Tools Manuf.
,
96
, pp.
56
66
.
You do not currently have access to this content.