Electrospinning, one of the most effective ways of producing nanofibers, has been applied in as many fields throughout its long history. Starting with far-field electrospinning (FFES) and advancing to the near-field, the application area has continued to expand, but lack of understanding of the exact jet speed and fiber deposition rate is a major obstacle to entry into precision micro- to nano-scale manufacturing. In this paper, we, for the first time, analyze and predict the jet velocity and deposition rate in near-field electrospinning (NFES) through novel image analysis process. Especially, analog image is converted into a digital image, and then, the area occupied by the deposited fiber is converted into a velocity, through which the accuracy of the proposed method is proved to be comparable to direct jet speed measurement. Finally, we verified the proposed method can be applied to various process conditions without performing delicate experiments. This research not only will broaden the understanding of jet speed and fiber deposition rate in NFES but also will be applicable to various areas including patterning of the sensor, a uniform arrangement of nanofibers, energy harvester, reinforcing of composite, and reproducing of artificial tissue.

References

1.
Reneker
,
D. H.
, and
Yarin
,
A. L.
,
2008
, “
Electrospinning Jets and Polymer Nanofibers
,”
Polym. (Guildf).
,
49
(
10
), pp.
2387
2425
.
2.
Deitzel
,
J. M.
,
Kleinmeyer
,
J. K.
,
Hirvonen
,
N. C.
, and
Beck Tan
,
N. C.
,
2001
, “
Controlled Deposition of Electrospun Poly(Ethylene Oxide) Fibers
,”
Polymer
,
42
(
19
), pp.
8163
8170
.
3.
Subbiah
,
T.
,
Bhat
,
G. S.
,
Tock
,
R. W.
,
Parameswaran
,
S.
, and
Ramkumar
,
S. S.
,
2005
, “
Electrospinning of Nanofibers
,”
J. Appl. Polym. Sci
,
96
(
2
), pp.
557
569
.
4.
Zhang
,
S.
,
Liu
,
H.
,
Yin
,
X.
,
Li
,
Z.
,
Yu
,
J.
, and
Ding
,
B.
,
2017
, “
Tailoring Mechanically Robust Poly(m-Phenylene Isophthalamide) Nanofiber/Nets for Ultrathin High-Efficiency Air Filter
,”
Sci. Rep.
,
7
, p.
40550
.
5.
Qin
,
X.-H.
, and
Wang
,
S.-Y.
,
2006
, “
Filtration Properties of Electrospinning Nanofibers
,”
J. Appl. Polym. Sci.
,
102
(
2
), pp.
1285
1290
.
6.
Yun, K. M., Hogan, C. J., Matsubayashi, Y., Kawabe, M., Iskandar, F., and Okuyama, K.,
2007
, “
Nanoparticle Filtration by Electrospun Polymer Fibers
,”
Chem. Eng. Sci.
,
62
(
17
), pp.
4751
4759
.
7.
Barhate, R. S., and Ramakrishna, S.,
2007
, “
Nanofibrous Filtering Media: Filtration Problems and Solutions From Tiny Materials
,”
J. Membr. Sci.
,
296
(
1–2
), pp.
1
8
.
8.
Huang
,
C.-Y.
,
Hu
,
K.-H.
, and
Wei
,
Z.-H.
,
2016
, “
Comparison of Cell Behavior on PVA/PVA-Gelatin Electrospun Nanofibers With Random and Aligned Configuration
,”
Sci. Rep.
,
6
(
1
), p.
37960
.
9.
Wang, X., Ding, B., and Li, B.,
2013
, “
Biomimetic Electrospun Nanofibrous Structures for Tissue Engineering
,”
Mater. Today
,
16
(
6
), pp.
229
241
.
10.
Bridge
,
J. C.
,
Aylott
,
J. W.
,
Brightling
,
C. E.
,
Ghaemmaghami
,
A. M.
,
Knox
,
A. J.
,
Lewis
,
M. P.
,
Rose
,
F. R. A. J.
, and
Morris
,
G. E.
,
2015
, “
Adapting the Electrospinning Process to Provide Three Unique Environments for a Tri-Layered In Vitro Model of the Airway Wall
,”
J. Vis. Exp.
, (
101
), p.
e52986
.
11.
Har-el, Y., Gerstenhaber, J. A., Brodsky, R., Huneke, R. B., and Lelkes, P. I.,
2014
, “
Electrospun Soy Protein Scaffolds as Wound Dressings: Enhanced Reepithelialization in a Porcine Model of Wound Healing
,”
Wound Med.
,
5
(5), pp.
9
15
.
12.
Chen
,
S.
,
Liu
,
B.
,
Carlson
,
M. A.
,
Gombart
,
A. F.
,
Reilly
,
D. A.
, and
Xie
,
J.
,
2017
, “
Recent Advances in Electrospun Nanofibers for Wound Healing
,”
Nanomedicine
,
12
(
11
), pp.
1335
1352
.
13.
Sill, T. J., and von Recum, H. A.,
2008
, “
Electrospinning: Applications in Drug Delivery and Tissue Engineering
,”
Biomaterials
,
29
(
13
), pp.
1989
2006
.
14.
Lee
,
S.
, and
Obendorf
,
S. K.
,
2007
, “
Use of Electrospun Nanofiber Web for Protective Textile Materials as Barriers to Liquid Penetration
,”
Text. Res. J.
,
77
(
9
), pp.
696
702
.
15.
Garg
,
K.
, and
Bowlin
,
G. L.
,
2011
, “
Electrospinning Jets and Nanofibrous Structures
,”
Biomicrofluidics
,
5
(
1
), p.
13403
.
16.
Reneker
,
D.
,
Kataphinan
,
W.
,
Theron
,
A.
,
Zussman
,
E.
, and
Yarin
,
A.
,
2002
, “
Nanofiber Garlands of Polycaprolactone by Electrospinning
,”
Polymer
,
43
(
25
), pp.
6785
6794
.
17.
Bellan
,
L. M.
,
Craighead
,
H. G.
, and
Hinestroza
,
J. P.
,
2007
, “
Direct Measurement of Fluid Velocity in an Electrospinning Jet Using Particle Image Velocimetry
,”
J. Appl. Phys.
,
102
(
9
), p.
94308
.
18.
Chang
,
J.
,
Dommer
,
M.
,
Chang
,
C.
, and
Lin
,
L.
,
2012
, “
Piezoelectric Nanofibers for Energy Scavenging Applications
,”
Nano Energy
,
1
(
3
), pp.
356
371
.
19.
Molnar
,
K.
,
2012
, “
Determination of Tensile Strength of Electrospun Single Nanofibers Through Modeling Tensile Behavior of the Nanofibrous Mat
,”
Compos. Part B Eng.
,
43
(
1
), pp.
15
21
.
20.
Deitzel
,
J. M.
,
2001
, “
The Effect of Processing Variables on the Morphology of Electrospun Nanofibers and Textiles
,”
Polymer
,
42
(
1
), pp.
261
272
.
21.
Ramakrishna
,
S.
,
Fujihara
,
K.
,
Teo
,
W.-E.
,
Lim
,
T.-C.
, and
Ma
,
Z.
,
2005
,
An Introduction to Electrospinning and Nanofibers
,
World Scientific
, Singapore.
22.
Beachley
,
V.
, and
Wen
,
X.
,
2009
, “
Effect of Electrospinning Parameters on the Nanofiber Diameter and Length
,”
Mater. Sci. Eng. C. Mater. Biol. Appl.
,
29
(
3
), pp.
663
668
.
23.
Chhaya
,
S.
,
Khera
,
S.
, and
Kumar
,
P.
,
2015
, “
Basic Geometric Shape and Primary Colour Detection Using Image Processing on Matlab
,”
IJRET Int. J.
,
4
(
5
), pp. 505–509.http://esatjournals.net/ijret/2015v04/i05/IJRET20150405094.pdf
24.
Indera Putera
,
S.
, and
Ibrahim
,
Z.
,
2010
, “
Printed Circuit Board Defect Detection Using Mathematical Morphology and MATLAB Image Processing Tools
,”
IEEE Second International Conference on Education Technology and Computer
(
ICETC
), Shanghai, China, June 22–24, pp.
V5-359
V5-363
.
You do not currently have access to this content.