Miniaturization of components is one of the major demands of the today's technological advancement. Microslots are one of the widely used microfeature found in various industries such as automobile, aerospace, fuel cells and medical. Surface roughness of the microslots plays critical role in high precision applications such as medical field (e.g., drug eluting stent and microfilters). In this paper, abrasive flow finishing (AFF) process is used for finishing of the microslots (width 450 μm) on surgical stainless steel workpiece that are fabricated by electrical discharge micromachining (EDμM). AFF medium is developed in-house and used for performing microslots finishing experiments. Developed medium not only helps in the removal of hard recast layer from the workpiece surfaces but also provides nano surface roughness. Parametric study of microslots finishing by AFF process is carried out with the help of central composite rotatable design (CCRD) method. The initial surface roughness on the microslots wall is in the range of 3.50 ± 0.10 μm. After AFF, the surface roughness is reduced to 192 nm with a 94.56% improvement in the surface roughness. To understand physics of the AFF process, three-dimensional (3D) finite element (FE) viscoelastic model of the AFF process is developed. Later, a surface roughness simulation model is also proposed to predict the final surface roughness after the AFF process. Simulated results are in good agreement with the experimental results.

References

References
1.
Jiao
,
F.
, and
Zhao
,
B.
,
2017
, “
Research on Ultrasonic-Assisted Fixed-Abrasive Lapping Technology for Engineering Ceramics Cylindrical Part
,”
ASME J. Micro Nano-Manuf.
,
5
(
2
), p.
021001
.
2.
Ross
,
D.
,
Wang
,
Y.
,
Ramadhan
,
H.
, and
Yamaguchi
,
H.
,
2016
, “
Polishing Characteristics of Transparent Polycrystalline Yttrium Aluminum Garnet Ceramics Using Magnetic Field-Assisted Finishing
,”
ASME J. Micro Nano-Manuf.
,
4
(
4
), p.
041007
.
3.
Berestovskyi
,
D.
,
Hung
,
W. N. P.
, and
Lomeli
,
P.
,
2014
, “
Surface Finish of Ball-End Milled Microchannels
,”
ASME J. Micro Nano-Manuf.
,
2
(
4
), p.
041005
.
4.
Perry
,
K. E.
,
1977
, “Abrasive Flow Machining Method and Tooling,” Dynetics Corp., Huntsville, AL, U.S. Patent No.
4,005,549
.https://patents.google.com/patent/US4005549A/en
5.
Walch
,
W. L.
,
Greenslet
,
M. J.
,
Rusnica
,
E. J.
, Jr.
,
Abt
,
R. S.
, and
Voss
,
L. J.
,
2002
, “High Precision Abrasive Flow Machining Apparatus and Method,” Extrude Hone Corp., U.S. Patent No.
6,500,050
.https://patents.google.com/patent/US6500050
6.
Yin
,
L.
,
Ramesh
,
K.
,
Wan
,
S.
,
Liu
,
X. D.
,
Huang
,
H.
, and
Liu
,
Y. C.
,
2004
, “
Abrasive Flow Polishing of Micro Bores
,”
Mater. Manuf. Process.
,
19
(
2
), pp.
187
207
.
7.
Lin
,
Y. C.
,
Chow
,
H. M.
,
Yan
,
B. H.
, and
Tzeng
,
H. J.
,
2007
, “
Effects of Finishing in Abrasive Fluid Machining on Microholes Fabricated by EDM
,”
Int. J. Adv. Manuf. Technol.
,
33
(
5–6
), pp.
489
497
.
8.
Tzeng
,
H. J.
,
Yan
,
B. H.
,
Hsu
,
R. T.
, and
Chow
,
H. M.
,
2007
, “
Finishing Effect of Abrasive Flow Machining on Micro Slit Fabricated by Wire-EDM
,”
Int. J. Adv. Manuf. Technol.
,
34
(
7–8
), pp.
649
656
.
9.
Jung
,
D.
,
Wang
,
W. L.
,
Knafl
,
A.
,
Jacobs
,
T. J.
,
Hu
,
S. J.
, and
Assanis
,
D. N.
,
2008
, “
Experimental Investigation of Abrasive Flow Machining Effects on Injector Nozzle Geometries, Engine Performance, and Emissions in a DI Diesel Engine
,”
Int. J. Automot. Technol.
,
9
(
1
), pp.
9
15
.
10.
Liu
,
W. N.
,
Xie
,
S. M.
,
Yang
,
L. F.
, and
Zhao
,
L.
,
2011
, “
Design for Experiment Device for Abrasive Flow Machining Based on Pro/E and ANSYA
,”
Adv. Mater. Res.
,
197–198
, pp.
69
73
.
11.
Li
,
J. Y.
,
Liu
,
W. N.
,
Yang
,
L. F.
,
Liu
,
B.
,
Zhao
,
L.
, and
Li
,
Z.
,
2011
, “
The Development of Nozzle Micro-Hole Abrasive Flow Machining Equipment
,”
Appl. Mech. Mater.
,
44–47
, pp.
251
255
.https://www.scientific.net/AMM.44-47.251
12.
Li
,
J.
,
Liu
,
W.
,
Yang
,
L.
,
Tian
,
C.
, and
Zhang
,
S.
,
2009
, “
A Method of Motion Control About Micro-Hole Abrasive Flow Machining Based on Delphi Language
,” International Conference on Mechatronics and Automation
(
ICMA
2009), Changchun, China, Aug. 9–12, pp.
1444
1448
.
13.
Rhoades
,
L. J.
,
1974
, “Medium for Process of Honing by Extruding,” Extrude Hone Corp., U.S. Patent No.
3,819,343
.https://patents.google.com/patent/US3819343
14.
Perry
,
W. B.
,
2000
, “Abrasive Liquid Slurry for Polishing and Radiusing a Microhole,” Extrude Hone Corp., U.S. Patent No.
6,132,482
.https://patents.google.com/patent/US6132482A/en
15.
Tzeng
,
H. J.
,
Yan
,
B. H.
,
Hsu
,
R. T.
, and
Lin
,
Y. C.
,
2007
, “
Self-Modulating Abrasive Medium and Its Application to Abrasive Flow Machining for Finishing Micro Channel Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
32
(
11–12
), pp.
1163
1169
.
16.
Kar
,
K. K.
,
Ravikumar
,
N. L.
,
Tailor
,
P. B.
,
Ramkumar
,
J.
, and
Sathiyamoorthy
,
D.
,
2009
, “
Preferential Media for Abrasive Flow Machining
,”
ASME J. Manuf. Sci. Eng.
,
131
(
1
), p.
011009
.
17.
Sankar
,
M. R.
,
Jain
,
V. K.
,
Ramkumar
,
J.
, and
Joshi
,
Y. M.
,
2011
, “
Rheological Characterization of Styrene-Butadiene Based Medium and Its Finishing Performance Using Rotational Abrasive Flow Finishing Process
,”
Int. J. Mach. Tools Manuf.
,
51
(
12
), pp.
947
957
.
18.
Jain
,
R. K.
,
Jain
,
V. K.
, and
Dixit
,
P. M.
,
1999
, “
Modeling of Material Removal and Surface Roughness in Abrasive Flow Machining Process
,”
Int. J. Mach. Tools Manuf.
,
39
(
12
), pp.
1903
1923
.
19.
Jain
,
R. K.
, and
Jain
,
V. K.
,
1999
, “
Simulation of Surface Generated in Abrasive Flow Machining Process
,”
Rob. Comput.-Integr. Manuf.
,
15
(
5
), pp.
403
412
.
20.
Jain
,
R. K.
, and
Jain
,
V. K.
,
2004
, “
Stochastic Simulation of Active Grain Density in Abrasive Flow Machining
,”
J. Mater. Process. Technol.
,
152
(
1
), pp.
17
22
.
21.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2006
, “
Prediction of Surface Roughness During Abrasive Flow Machining
,”
Int. J. Adv. Manuf. Technol.
,
31
(
3–4
), pp.
258
267
.
22.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2004
, “
Experimental Investigation Into Cutting Forces and Active Grain Density During Abrasive Flow Machining
,”
Int. J. Mach. Tools Manuf.
,
44
(
2–3
), pp.
201
211
.
23.
Gorana
,
V. K.
,
Jain
,
V. K.
, and
Lal
,
G. K.
,
2006
, “
Forces Prediction During Material Deformation in Abrasive Flow Machining
,”
Wear
,
260
(
1–2
), pp.
128
139
.
24.
Singh
,
S.
,
Kumar
,
D.
, and
Sankar
,
M. R.
,
2017
, “
Experimental, Theoretical and Simulation Comparative Study of Nano Surface Roughness Generated During Abrasive Flow Finishing (AFF) Process
,”
ASME J. Manuf. Sci. Eng.
,
139
(
6
), p.
061014
.
You do not currently have access to this content.