Engineered microenvironments along with robust quantitative models of cell shape metrology that can decouple the effect of various well-defined cues on a stem cell's phenotypic response would serve as an illuminating tool for testing mechanistic hypotheses on how stem cell fate is fundamentally regulated. As an experimental testbed to probe the effect of geometrical confinement on cell morphology, three-dimensional (3D) poly(ε-caprolactone) (PCL) layered fibrous meshes are fabricated with an in-house melt electrospinning writing system (MEW). Gradual confinement states of fibroblasts are demonstrated by seeding primary fibroblasts on defined substrates, including a classical two-dimensional (2D) petri dish and porous 3D fibrous substrates with microarchitectures tunable within a tight cellular dimensional scale window (1–50 μm). To characterize fibroblast confinement, a quantitative 3D confocal fluorescence imaging workflow for 3D cell shape representation is presented. The methodology advanced allows the extraction of cellular and subcellular morphometric features including the number, location, and 3D distance distribution metrics of the shape-bearing focal adhesion (FA) proteins.

References

1.
Lund
,
A. W.
,
Yener
,
B.
,
Stegemann
,
J. P.
, and
Plopper
,
G. E.
,
2010
, “
The Natural and Engineered 3D Microenvironment as a Regulatory Cue During Stem Cell Fate Determination
,”
Tissue Eng. Part B. Rev.
,
15
(
3
), pp.
371
380
.
2.
Hunsberger
,
J.
,
Harrysson
,
O.
,
Shirwaiker
,
R.
,
Starly
,
B.
,
Wysk
,
R.
,
Cohen
,
P.
,
Allickson
,
J.
,
Yoo
,
J.
, and
Atala
,
A.
,
2015
, “
Manufacturing Road Map for Tissue Engineering and Regenerative Medicine Technologies
,”
Stem Cells Transl. Med.
,
4
(
2
), pp.
130
135
.
3.
Lampe
,
K. J.
, and
Heilshorn
,
S. C.
,
2012
, “
Building Stem Cell Niches From the Molecule Up Through Engineered Peptide Materials
,”
Neurosci. Lett.
,
519
(
2
), pp.
138
146
.
4.
Baker
,
B. M.
,
Trappmann
,
B.
,
Wang
,
W. Y.
,
Sakar
,
M. S.
,
Kim
,
I. L.
,
Shenoy
,
V. B.
,
Burdick
,
J. A.
, and
Chen
,
C. S.
,
2015
, “
Cell-Mediated Fibre Recruitment Drives Extracellular Matrix Mechanosensing in Engineered Fibrillar Microenvironments
,”
Nat. Mater.
,
14
(
12
), pp.
1262
1268
.
5.
Baker
,
B. M.
, and
Chen
,
C. S.
,
2012
, “
Deconstructing the Third Dimension—How 3D Culture Microenvironments Alter Cellular Cues
,”
J. Cell Sci.
,
125
(
13
), pp.
3015
3024
.
6.
Chen
,
C. S.
,
2008
, “
Mechanotransduction—A Field Pulling Together?
,”
J. Cell Sci.
,
121
(
20
), pp.
3285
3292
.
7.
Huang
,
S.
,
Chen
,
C. S.
, and
Ingber
,
D. E.
,
1998
, “
Control of Cyclin D1, p27Kip1, and Cell Cycle Progression in Human Capillary Endothelial Cells by Cell Shape and Cytoskeletal Tension
,”
Mol. Biol. Cell
,
9
(
11
), pp.
3179
3193
.
8.
Dike
,
L. E.
,
Chen
,
C. S.
,
Mrksich
,
M.
,
Tien
,
J.
,
Whitesides
,
G. M.
, and
Ingber
,
D. E.
,
1999
, “
Geometric Control of Switching Between Growth, Apoptosis, and Differentiation During Angiogenesis Using Micropatterned Substrates
,”
In Vitro Cell. Dev. Biol.: Anim.
,
35
(
8
), pp.
441
448
.
9.
McBeath
,
R.
,
Pirone
,
D. M.
,
Nelson
,
C. M.
,
Bhadriraju
,
K.
, and
Chen
,
C. S.
,
2004
, “
Cell Shape, Cytoskeletal Tension, and RhoA Regulate Stem Cell Lineage Commitment
,”
Dev. Cell
,
6
(
4
), pp.
483
495
.
10.
Kumar
,
G.
,
Tison
,
C. K.
,
Chatterjee
,
K.
,
Pine
,
P. S.
,
McDaniel
,
J. H.
,
Salit
,
M. L.
,
Young
,
M. F.
, and
Simon
,
C. G.
,
2011
, “
The Determination of Stem Cell Fate by 3D Scaffold Structures Through the Control of Cell Shape
,”
Biomaterials
,
32
(
35
), pp.
9188
9196
.
11.
Farooque
,
T. M.
,
Camp
,
C. H.
,
Tison
,
C. K.
,
Kumar
,
G.
,
Parekh
,
S. H.
, and
Simon
,
C. G.
,
2014
, “
Measuring Stem Cell Dimensionality in Tissue Scaffolds
,”
Biomaterials
,
35
(
9
), pp.
2558
2567
.
12.
Chen
,
D.
,
Sarkar
,
S.
,
Candia
,
J.
,
Florczyk
,
S. J.
,
Bodhak
,
S.
,
Driscoll
,
M. K.
,
Simon
,
C. G.
, Jr.
,
Dunkers
,
J. P.
, and
Losert
,
W.
,
2016
, “
Machine Learning Based Methodology to Identify Cell Shape Phenotypes Associated With Microenvironmental Cues
,”
Biomaterials
,
104
, pp.
104
118
.
13.
Lewis
,
E. E. L.
,
Wheadon
,
H.
,
Lewis
,
N.
,
Yang
,
J.
,
Mullin
,
M.
,
Hursthouse
,
A.
,
Stirling
,
D.
,
Dalby
,
M. J.
, and
Berry
,
C. C.
,
2016
, “
A Quiescent, Regeneration-Responsive Tissue Engineered Mesenchymal Stem Cell Bone Marrow Niche Model Via Magnetic Levitation
,”
ACS Nano
,
10
(
9
), pp.
8346
8354
.
14.
Dalby
,
M. J.
,
Gadegaard
,
N.
, and
Oreffo
,
R. O. C.
,
2014
, “
Harnessing Nanotopography and Integrin-Matrix Interactions to Influence Stem Cell Fate
,”
Nat. Mater.
,
13
(
6
), pp.
558
69
.
15.
Murphy
,
W. L.
,
McDevitt
,
T. C.
, and
Engler
,
A. J.
,
2014
, “
Materials as Stem Cell Regulators
,”
Nat. Mater.
,
13
(
6
), pp.
547
557
.
16.
McMurray
,
R. J.
,
Gadegaard
,
N.
,
Tsimbouri
,
P. M.
,
Burgess
,
K. V.
,
McNamara
,
L. E.
,
Tare
,
R.
,
Murawski
,
K.
,
Kingham
,
E.
,
Oreffo
,
R. O. C.
, and
Dalby
,
M. J.
,
2011
, “
Nanoscale Surfaces for the Long-Term Maintenance of Mesenchymal Stem Cell Phenotype and Multipotency
,”
Nat. Mater.
,
10
(
8
), pp.
637
644
.
17.
Di Maggio
,
N.
,
Piccinini
,
E.
,
Jaworski
,
M.
,
Trumpp
,
A.
,
Wendt
,
D. J.
, and
Martin
,
I.
,
2011
, “
Toward Modeling the Bone Marrow Niche Using Scaffold-Based 3D Culture Systems
,”
Biomaterials
,
32
(
2
), pp.
321
329
.
18.
Tourlomousis
,
F.
,
Babakhanov
,
A.
,
Ding
,
H.
, and
Chang
,
R. C.
,
2015
, “
A Novel Melt Electrospinning System for Studying Cell Substrate Interactions
,”
ASME
Paper No. MSEC2015-9443.
19.
Tourlomousis
,
F.
,
Ding
,
H.
,
Dole
,
A.
, and
Chang
,
R. C.
,
2016
, “
Towards Resolution Enhancement and Process Repeatability With a Melt Electrospinning Writing Process: Design and Protocol Considerations
,”
ASME
Paper No. MSEC2016-8774.
20.
Tourlomousis
,
F.
,
Ding
,
H.
,
Kalyon
,
D. M.
, and
Chang
,
R. C.
,
2017
, “
Melt Electrospinning Writing Process Guided by a Printability Number
,”
ASME J. Manuf. Sci. Eng.
,
139
(
8
), p.
081004
.
21.
Schindelin
,
J.
,
Arganda-Carreras
,
I.
,
Frise
,
E.
,
Kaynig
,
V.
,
Longair
,
M.
,
Pietzsch
,
T.
,
Preibisch
,
S.
,
Rueden
,
C.
,
Saalfeld
,
S.
,
Schmid
,
B.
,
Tinevez
,
J.-Y.
,
White
,
D. J.
,
Hartenstein
,
V.
,
Eliceiri
,
K.
,
Tomancak
,
P.
, and
Cardona
,
A.
,
2012
, “
Fiji: An Open Source Platform for Biological Image Analysis
,”
Nat. Methods
,
9
(
7
), pp.
676
682
.
22.
Sosa
,
J. M.
,
Huber
,
D. E.
,
Welk
,
B.
, and
Fraser
,
H. L.
,
2014
, “
Development and Application of MIPARTM: A Novel Software Package for Two- and Three-Dimensional Microstructural Characterization
,”
Integr. Mater. Manuf. Innovation
,
3
(
1
), pp.
1
18
.
23.
Tibbitt
,
M. W.
, and
Anseth
,
K. S.
,
2009
, “
Hydrogel as Extracellular Matrix Mimics for 3D Cell Culture
,”
Biotechnol. Bioeng.
,
103
(
4
), pp.
655
663
.
You do not currently have access to this content.