This paper develops a novel standing surface acoustic wave (SAW) device with three pairs of interdigital transducers (IDTs) to fabricate the patterned microstructure arrays with the assistance of ultraviolet (UV) polymerization. The working principle, structural design, and fabrication of the SAW device are presented. Then, experimental setup was conducted to investigate the fabrication process and method of the patterned microstructure arrays on a thin photosensitive polymer surface. By adjusting the working wavelength and input voltage and selecting the pairs of IDTs, several types of patterned microstructure arrays, such as linear and latticed undulate with different surface morphologies, could be fabricated. For the application of the microstructure arrays, L929 mouse fibroblasts are cultured on the surface with linear undulate microstructure arrays. Preliminary results showed that the cells aligned well with the direction of the patterned surface and the array can enhance the cell culturing. Therefore, using the developed SAW device with the assistance of UV polymerization is an effective method to fabricate the patterned microstructure arrays, which may have great potential in the applications of biomedical and/or microelectronic fields.

References

References
1.
Soman
,
P.
,
Chung
,
P. H.
,
Zhang
,
A. P.
, and
Chen
,
S. C.
,
2013
, “
Digital Microfabrication of User-Defined 3D Microstructures in Cell-Laden Hydrogels
,”
Biotechnol. Bioeng.
,
110
(
11
), pp.
3038
3047
.
2.
Nichol
,
J. W.
,
Koshy
,
S. T.
,
Bae
,
H.
,
Hwang
,
C. M.
,
Yamanlar
,
S.
, and
Khademhosseini
,
A.
,
2010
, “
Cell-Laden Microengineered Gelatin Methacrylate Hydrogels
,”
Biomaterials
,
31
(
21
), pp.
5536
5544
.
3.
Agarwal
,
A.
,
Farouz
,
Y.
,
Nesmith
,
A. P.
,
Deravi
,
L. F.
,
McCain
,
M. L.
, and
Parker
,
K. K.
,
2013
, “
Micropatterning Alginate Substrates for In Vitro Cardiovascular Muscle on a Chip
,”
Adv. Funct. Mater.
,
23
(
30
), pp.
3738
3746
.
4.
Zhang
,
W. F.
, and
Jiang
,
X. Y.
,
2014
, “
Precise Manipulation of Cell Behaviors on Surfaces for Construction of Tissue/Organs
,”
Colloids Surf., B
,
124
(
1
), pp.
97
110
.
5.
Costa
,
P.
,
Gautrot
,
J. E.
, and
Connelly
,
J. T.
,
2014
, “
Directing Cell Migration Using Micropatterned and Dynamically Adhesive Polymer Brushes
,”
Acta Biomater.
,
10
(
6
), pp.
2415
2422
.
6.
Li
,
T.
,
Qin
,
L.
,
Wang
,
X. W.
,
Xiong
,
Z. P.
,
Ding
,
H. Y.
,
Gu
,
Y.
,
Liu
,
Z.
, and
Zhang
,
T.
,
2016
, “
Flexible Capacitive Tactile Sensor Based on Micropatterned Dielectric Layer
,”
Small
,
12
(
36
), pp.
5042
5048
.
7.
Liang
,
G. H.
,
Wang
,
Y. C.
,
Mei
,
D. Q.
,
Xi
,
K. L.
, and
Chen
,
Z. C.
,
2015
, “
Flexible Capacitive Tactile Sensor Array With Truncated Pyramids as Dielectric Layer for Three-Axis Force Measurement
,”
J. Microelectromech. Syst.
,
24
(
5
), pp.
1510
1519
.
8.
Tee
,
B. C.-K.
,
Chortos
,
A.
,
Dunn
,
R. R.
,
Schwartz
,
G.
,
Eason
,
E.
, and
Bao
,
Z. N.
,
2014
, “
Tunable Flexible Pressure Sensors Using Microstructured Elastomer Geometries for Intuitive Electronics
,”
Adv. Funct. Mater.
,
24
(31), pp.
5427
5434
.
9.
Xie
,
J.
,
Zhuo
,
Y. W.
, and
Tan
,
T. W.
,
2011
, “
Experimental Study on Fabrication and Evaluation of Micro Pyramid-Structured Silicon Surface Using a V-Tip of Diamond Grinding Wheel
,”
Precis. Eng.
,
35
(
1
), pp.
173
182
.
10.
Zhang
,
A. P.
,
Qu
,
X.
,
Soman
,
P.
,
Hribar
,
K. C.
,
Lee
,
J. W.
,
Chen
,
S. C.
, and
He
,
S. L.
,
2012
, “
Rapid Fabrication of Complex 3D Extracellular Microenvironments by Dynamic Optical Projection Stereolithography
,”
Adv. Mater.
,
24
(31), pp.
4266
4270
.
11.
Thompson
,
M. K.
,
Moroni
,
M.
,
Vaneker
,
T.
,
Fadel
,
G.
,
Campbell
,
R. I.
,
Gibson
,
I.
,
Bernard
,
A.
,
Schulz
,
J.
,
Graf
,
P.
,
Ahuja
,
P. B.
, and
Martina
,
F.
,
2016
, “
Design for Additive Manufacturing: Trends, Opportunities, Considerations, and Constraints
,”
CIRP Ann.- Manuf. Technol.
,
65
(
2
), pp.
737
760
.
12.
Kovacs
,
G. T. A.
,
Maluf
,
N. I.
, and
Petersen
,
K. E.
,
1998
, “
Bulk Micromachining of Silicon
,”
J. Microelectromech. Syst.
,
86
(
8
), pp.
1536
1551
.
13.
Williams
,
K. R.
, and
Muller
,
R. S.
,
1996
, “
Etch Rates for Micromachining Processing
,”
J. Microelectromech. Syst.
,
5
(
4
), pp.
256
269
.
14.
Slater
,
J. H.
,
Miller
,
J. S.
,
Yu
,
S. S.
, and
West
,
J. F.
,
2011
, “
Fabrication of Multifaceted Micropatterned Surfaces With Laser Scanning Lithography
,”
Adv. Funct. Mater.
,
21
(15), pp.
2876
2888
.
15.
Qi
,
A.
,
Yeo
,
L. Y.
, and
Friend
,
J. R.
,
2008
, “
Interfacial Destabilization and Atomization Driven by Surface Acoustic Waves
,”
Phys. Fluids
,
20
(
7
), p.
074103
.
16.
Tan
,
M. K.
,
Friend
,
J. R.
,
Matar
,
O. K.
, and
Yeo
,
L. Y.
,
2010
, “
Capillary Wave Motion Excited by High Frequency Surface Acoustic Waves
,”
Phys. Fluids
,
22
(
11
), p.
112112
.
17.
White
,
R. M.
, and
Voltmer
,
F. W.
,
1965
, “
Direct Piezoelectric Coupling to Surface Elastic Waves
,”
Appl. Phys. Lett.
,
7
(
12
), pp.
314
316
.
18.
Mei
,
D. Q.
,
Dai
,
X.
,
Wang
,
Y. C.
, and
Chen
,
S. C.
,
2016
, “
Undulate Microarray Fabrication on Polymer Film Using Standing Surface Acoustic Waves and Ultraviolet Polymerization
,”
Appl. Phys. Lett.
,
108
(
24
), p.
241911
.
19.
Wang
,
Y.
,
Xue
,
D.
,
Deng
,
Z.
, and
Mei
,
D.
,
2017
, “Patterned Microstructure Array Fabrication by Using a Novel Standing Surface Acoustic Wave Device,”
ASME
Paper No. MSEC2017-2962.
20.
Renaudin
,
A.
,
Tabourier
,
P.
,
Camart
,
J.-C.
, and
Druon
,
C.
,
2006
, “
Surface Acoustic Wave Two-Dimensional Transport and Location of Microdroplets Using Echo Signal
,”
J. Appl. Phys.
,
100
(
11
), pp.
855
866
.
21.
Chono
,
K.
,
Shimizu
,
N.
,
Matsui
,
Y.
,
Kondoh
,
J.
, and
Shiokawa
,
S.
,
2004
, “
Development of Novel Atomization System Based on SAW Streaming
,”
JPN. J. Appl. Phys.
,
43
(
1
), pp.
2987
2991
.
22.
Ding
,
X. Y.
,
Lin
,
S.-C. S.
,
Kiraly
,
B.
,
Yue
,
H. J.
,
Li
,
S. X.
,
Chiang
,
I.-K.
,
Shi
,
J. J.
,
Benkovic
,
S. J.
, and
Huang
,
T. J.
,
2012
, “
On-Chip Manipulation of Single Microparticles, Cells, and Organisms Using Surface Acoustic Waves
,”
Proc. Natl. Acad. Sci. U. S. A.
,
109
(
28
), pp.
11105
11109
.
23.
Wang
,
Y. C.
,
Yu
,
Z. K.
,
Mei
,
D. Q.
, and
Xue
,
D.
,
2017
, “
Fabrication of Micro-Wavy Patterned Surfaces for Enhanced Cell Culturing
,”
Proc. CIRP
,
65
, pp.
279
283
.
You do not currently have access to this content.