As an emerging and effective nanomanufacturing technology, the directional freezing-based three-dimensional (3D) printing can form 3D nanostructures with complex shapes and superior functionalities, and thus has received ever-increasing publicity in the past years. One of the key challenges in this process is the proper heat management, since the heat-induced melting and solidification process significantly affects the functional integrity and structural integrity of the printed structure. A novel approach for heat prediction out of modeling and optimization is introduced in this study. Based on the prediction, we propose a heuristic tool path planning method. The simulation results demonstrate that the tool path planning highly affects the spatial and temporal temperature distribution of the being printed part, and the optimized tool path planning can effectively improve the uniformity of the temperature distribution, which will consequently enhance the performance of the fabricated nanostructures.

References

References
1.
Sun
,
H.
,
Xu
,
Z.
, and
Gao
,
C.
,
2013
, “
Multifunctional, Ultra‐Flyweight, Synergistically Assembled Carbon Aerogels
,”
Adv. Mater.
,
25
(18), pp.
2554
2560
.
2.
Nardecchia
,
S.
,
Carriazo
,
D.
,
Ferrer
,
M. L.
,
Gutiérrez
,
M. C.
, and
del Monte
,
F.
,
2013
, “
Three Dimensional Macroporous Architectures and Aerogels Built of Carbon Nanotubes and/or Graphene: Synthesis and Applications
,”
Chem. Soc. Rev.
,
42
(2), pp.
794
830
.
3.
Zhang
,
F.
,
Wei
,
M.
,
Viswanathan
,
V. V.
,
Swart
,
B.
,
Shao
,
Y.
,
Wu
,
G.
, and
Zhou
,
C.
,
2017
, “3D Printing Technologies for Electrochemical Energy Storage,”
Nano Energy
,
40
, pp. 418–431.
4.
García-Tuñon
,
E.
,
Barg
,
S.
,
Franco
,
J.
,
Bell
,
R.
,
Eslava
,
S.
,
D'Elia
,
E.
,
Maher
,
R. C.
,
Guitian
,
F.
, and
Saiz
,
E.
,
2015
, “
Printing in Three Dimensions With Graphene
,”
Adv. Mater.
,
27
(
10
), pp.
1688
1693
.
5.
Jakus
,
A. E.
,
Secor
,
E. B.
,
Rutz
,
A. L.
,
Jordan
,
S. W.
,
Hersam
,
M. C.
, and
Shah
,
R. N.
,
2015
, “
Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications
,”
ACS Nano
,
9
(4), pp.
4636
4648
.
6.
Bi
,
H.
,
Chen
,
I. W.
,
Lin
,
T.
, and
Huang
,
F.
,
2015
, “
A New Tubular Graphene Form of a Tetrahedrally Connected Cellular Structure
,”
Adv. Mater.
,
27
(
39
), pp.
5943
5949
.
7.
Zhu
,
C.
,
Han
,
T. Y.-J.
,
Duoss
,
E. B.
,
Golobic
,
A. M.
,
Kuntz
,
J. D.
,
Spadaccini
,
C. M.
, and
Worsley
,
M. A.
,
2015
, “
Highly Compressible 3D Periodic Graphene Aerogel Microlattices
,”
Nat. Commun.
,
6
, p.
6962
.
8.
Yan
,
P.
,
Brown
,
E.
,
Su
,
Q.
,
Li
,
J.
,
Wang
,
J.
,
Xu
,
C.
,
Zhou
,
C.
, and
Lin
,
D.
,
2017
, “3D Printing Hierarchical Silver Nanowire Aerogel With Highly Compressive Resilience and Tensile Elongation Through Tunable Poisson's Ratio,”
Small
,
13
(38), p. 1701756.
9.
Zhang
,
Q.
,
Zhang
,
F.
,
Medarametla
,
S. P.
,
Li
,
H.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “3D Printing of Graphene Aerogels,”
Small
,
12
(13), pp. 1702–1708.
10.
Zhang
,
F.
,
Yang
,
F.
,
Lin
,
D.
, and
Zhou
,
C.
,
2017
, “
Parameter Study of Three-Dimensional Printing Graphene Oxide Based on Directional Freezing
,”
ASME J. Manuf. Sci. Eng.
,
139
(3), p.
031016
.
11.
Zhao
,
G.
,
Lin
,
D.
, and
Zhou
,
C.
,
2017
, “
Thermal Analysis of Directional Freezing Based Graphene Aerogel Three-Dimensional Printing Process
,”
ASME J. Micro Nano-Manuf.
,
5
(1), p.
011006
.
12.
Sui
,
G.
, and
Leu
,
M. C.
,
2003
, “
Thermal Analysis of Ice Walls Built by Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
125
(4), pp.
824
834
.
13.
Liu
,
Q.
, and
Leu
,
M. C.
,
2007
, “
Finite Element Analysis of Solidification in Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
129
(4), pp.
810
820
.
14.
Bryant
,
F. D.
, and
Leu
,
M. C.
,
2009
, “
Predictive Modeling and Experimental Verification of Temperature and Concentration in Rapid Freeze Prototyping With Support Material
,”
ASME J. Manuf. Sci. Eng.
,
131
(4), p.
041020
.
15.
Bellini
,
A.
,
Shor
,
L.
, and
Guceri
,
S. I.
,
2005
, “
New Developments in Fused Deposition Modeling of Ceramics
,”
Rapid Prototyping J.
,
11
(4), pp.
214
220
.
16.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects,”
ASME
Paper No. MSEC2012-7253.
17.
Costa
,
S.
,
Duarte
,
F.
, and
Covas
,
J. A.
,
2011
, “Using MATLAB to Compute Heat Transfer in Free Form Extrusion,”
MATLAB - A Ubiquitous Tool for the Practical Engineer
,
C. M.
Ionescu
, ed., InTech, Rijeka, Croatia, p.
453
.
18.
Costa
,
S.
,
2013
, “Free Form Extrusion: Extrusion of 3D Components Using Complex Polymeric Systems,”
Ph.D. thesis
, Universidade do Minho, Braga, Portugal.http://www3.dsi.uminho.pt/seeum2010/CD/abstracts/1708_4.pdf
19.
Farouki
,
R.
,
Koenig
,
T.
,
Tarabanis
,
K.
,
Korein
,
J.
, and
Batchelder
,
J.
,
1995
, “
Path Planning With Offset Curves for Layered Fabrication Processes
,”
J. Manuf. Syst.
,
14
(5), p.
355
.
20.
Yang
,
Y.
,
Loh
,
H.
,
Fuh
,
J.
, and
Wang
,
Y.
,
2002
, “
Equidistant Path Generation for Improving Scanning Efficiency in Layered Manufacturing
,”
Rapid Prototyping J.
,
8
(1), pp.
30
37
.
21.
Wang
,
H.
,
Jang
,
P.
, and
Stori
,
J. A.
,
2005
, “
A Metric-Based Approach to Two-Dimensional (2D) Tool-Path Optimization for High-Speed Machining
,”
ASME J. Manuf. Sci. Eng.
,
127
(1), pp.
33
48
.
22.
Ren
,
F.
,
Sun
,
Y.
, and
Guo
,
D.
,
2009
, “
Combined Reparameterization-Based Spiral Toolpath Generation for Five-Axis Sculptured Surface Machining
,”
Int. J. Adv. Manuf. Technol.
,
40
(7–8), pp.
760
768
.
23.
Butz
,
A. R.
,
1971
, “
Alternative Algorithm for Hilbert's Space-Filling Curve
,”
IEEE Trans. Comput.
,
C-20
(
4
), pp.
424
426
.
24.
Ding
,
D.
,
Pan
,
Z. S.
,
Cuiuri
,
D.
, and
Li
,
H.
,
2014
, “
A Tool-Path Generation Strategy for Wire and Arc Additive Manufacturing
,”
Int. J. Adv. Manuf. Technol.
,
73
(1–4), pp.
173
183
.
You do not currently have access to this content.