To date, several additive manufacturing (AM) technologies have been developed for fabricating smart particle–polymer composites. Those techniques can control particle distributions to achieve gradient or heterogeneous properties and functions. Such manufacturing capability opened up new applications in many fields. However, it is still widely unknown how to design the localized material distribution to achieve desired product properties and functionalities. The correlation between microscale material distribution and macroscopic composite performance needs to be established. In our previous work, a novel magnetic field-assisted stereolithography (M-PSL) process was developed, for fabricating magnetic particle–polymer composites. In this work, we focused on the study of magnetic-field-responsive particle–polymer composite design with the aim of developing guidelines for predicting the magnetic-field-responsive properties of the composite. Microscale particle distribution parameters, including particle loading fraction, magnetic particle chain structure, microstructure orientation, and particle distribution patterns, were investigated. Their influences on the properties of particle–polymer liquid suspensions and properties of the three-dimensional (3D) printed composites were characterized. By utilizing the magnetic anisotropy properties of the printed composites, motions of the printed parts could be actuated at different positions in the applied magnetic field. Physical models were established to predict magnetic properties of the composite and trigger distance of fabricated parts. The predicted results agreed well with the experimental measurements, indicating the effectiveness of predicting macroscopic composite performance using microscale distribution data, and the feasibility of using the developed physical models to guide multimaterial and multifunctional composite design.

References

References
1.
Zhang
,
L.
,
Peyer
,
K. E.
, and
Nelson
,
B. J.
,
2010
, “
Artificial Bacterial Flagella for Micromanipulation
,”
Lab Chip
,
10
(
17
), pp.
2203
2215
.
2.
Zhang
,
L.
,
Abbott
,
J. J.
,
Dong
,
L.
,
Peyer
,
K. E.
,
Kratochvil
,
B. E.
,
Zhang
,
H.
,
Bergeles
,
C.
, and
Nelson
,
B. J.
,
2009
, “
Characterizing the Swimming Properties of Artificial Bacterial Flagella
,”
Nano Lett.
,
9
(
10
), pp.
3663
3667
.
3.
Leong
,
T. G.
,
Randall
,
C. L.
,
Benson
,
B. R.
,
Bassik
,
N.
,
Stern
,
G. M.
, and
Gracias
,
D. H.
,
2009
, “
Tetherless Thermobiochemically Actuated Microgrippers
,”
Proc. Natl. Acad. Sci.
,
106
(
3
), pp.
703
708
.
4.
Zhu
,
W.
,
Li
,
J.
,
Leong
,
Y. J.
,
Rozen
,
I.
,
Qu
,
X.
,
Dong
,
R.
,
Wu
,
Z.
,
Gao
,
W.
,
Chung
,
P. H.
,
Wang
,
J.
, and
Chen
,
S.
,
2015
, “
3D‐Printed Artificial Microfish
,”
Adv. Mater.
,
27
(
30
), pp.
4411
4417
.
5.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A. R.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
, p.
8643
.
6.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhang
,
Z.
,
Zhang
,
J.
,
Shung
,
K. K.
,
Zhou
,
Q.
, and
Chen
,
Y.
,
2017
, “
Biomimetic Anisotropic Reinforcement Architectures by Electrically Assisted Nanocomposite 3D Printing
,”
Adv. Mater.
,
29
(
11
), p.
1605750
.
7.
Genovéva
,
F.
,
Csetneki
,
I.
,
Szilágyi
,
A.
, and
Zrínyi
,
M.
,
2007
, “
Magnetic Field-Responsive Smart Polymer Composites
,”
Oligomers-Polymer Composites-Molecular Imprinting
,
Springer
,
Berlin
, pp.
137
189
.
8.
Wurm
,
G.
,
Tomancok
,
B.
,
Holl
,
K.
, and
Trenkler
,
J.
,
2004
, “
Prospective Study on Cranioplasty With Individual Carbon Fiber Reinforced Polymer (CFRP) Implants Produced by Means of Stereolithography
,”
Surg. Neurol.
,
62
(
6
), pp.
510
521
.
9.
Lu
,
L.
,
Guo
,
P.
, and
Pan
,
Y.
,
2017
, “
Magnetic-Field-Assisted Projection Stereolithography for Three-Dimensional Printing of Smart Structures
,”
ASME J. Manuf. Sci. Eng.
,
139
(
7
), p.
071008
.
10.
Vach
,
P. J.
,
Burn
,
N.
,
Bennet
,
M.
,
Bertinetti
,
L.
,
Widdrat
,
M.
,
Baumgartner
,
J.
,
Klumpp
,
S.
,
Fratzl
,
P.
, and
Faivre
,
D.
,
2013
, “
Selecting for Function: Solution Synthesis of Magnetic Nanopropellers
,”
Nano Lett.
,
13
(
11
), pp.
5373
5378
.
11.
Ji
,
Y. Z.
,
Wang
,
Z.
,
Wang
,
B.
,
Chen
,
Y.
,
Zhang
,
T.
,
Chen
,
L. Q.
,
Song
,
X.
, and
Chen
,
L.
,
2017
, “
Effect of Meso‐Scale Geometry on Piezoelectric Performances of Additively Manufactured Flexible Polymer‐Pb (ZrxTi1−x) O3 Composites
,”
Adv. Eng. Mater.
,
19
(
6
), p.
1600803
.
12.
Chakraborty
,
P.
,
Gundrati
,
N. B.
,
Zhou
,
C.
, and
Chung
,
D. D. L.
,
2017
, “
Effect of Stress on the Capacitance and Electric Permittivity of Three-Dimensionally Printed Polymer, With Relevance to Capacitance-Based Stress Monitoring
,”
Sens. Actuators, A
,
263
, pp.
380
385
.
13.
Chabok
,
H.
,
Zhou
,
C.
,
Chen
,
Y.
,
Eskandarinazhad
,
A.
,
Zhou
,
Q.
, and
Shung
,
K.
,
2012
, “
Ultrasound Transducer Array Fabrication Based on Additive Manufacturing of Piezocomposites
,”
ASME
Paper No. ISFA2012-7119.
14.
Gundrati
,
N. B.
,
Chakraborty
,
P.
,
Zhou
,
C.
, and
Chung
,
D. D. L.
,
2017
, “
Effects of Printing Conditions on the Molecular Alignment of Three-Dimensionally Printed Polymer
,”
Composites, Part B
,
134
, pp.
164
168
.
15.
Yang
,
Y.
,
Chen
,
Z.
,
Song
,
X.
,
Zhu
,
B.
,
Hsiai
,
T.
,
Wu
,
P. I.
,
Xiong
,
R.
,
Shi
,
J.
,
Chen
,
Y.
,
Zhou
,
Q.
, and
Shung
,
K. K.
,
2016
, “
Three Dimensional Printing of High Dielectric Capacitor Using Projection Based Stereolithography Method
,”
Nano Energy
,
22
, pp.
414
421
.
16.
Lin
,
D.
,
Jin
,
S.
,
Zhang
,
F.
,
Wang
,
C.
,
Wang
,
Y.
,
Zhou
,
C.
, and
Cheng
,
G. J.
,
2015
, “
3D Stereolithography Printing of Graphene Oxide Reinforced Complex Architectures
,”
Nanotechnology
,
26
(
43
), p.
434003
.
17.
Bartolo
,
P. J.
, and
Gaspar
,
J.
,
2008
, “
Metal Filled Resin for Stereolithography Metal Part
,”
CIRP Ann.
,
57
(
1
), pp.
235
238
.
18.
Chen
,
B.
,
Jiang
,
Y.
,
Tang
,
X.
,
Pan
,
Y.
, and
Hu
,
S.
,
2017
, “
Fully Packaged Carbon Nanotube Supercapacitors by Direct Ink Writing on Flexible Substrates
,”
ACS Appl. Mater. Interfaces
,
9
(
34
), pp.
28433
28440
.
19.
Chung
,
S. E.
,
Kim
,
J.
,
Choi
,
S. E.
,
Kim
,
L. N.
, and
Kwon
,
S.
,
2011
, “
In Situ Fabrication and Actuation of Polymer Magnetic Microstructures
,”
J. Microelectromech. Syst.
,
20
(
1
), pp.
785
787
.
20.
Kim
,
J.
,
Chung
,
S. E.
,
Choi
,
S. E.
,
Lee
,
H.
,
Kim
,
J.
, and
Kwon
,
S.
,
2011
, “
Programming Magnetic Anisotropy in Polymeric Microactuators
,”
Nat. Mater.
,
10
, pp.
747
752
.
21.
Martin
,
J. J.
,
Fiore
,
B. E.
, and
Erb
,
R. M.
,
2015
, “
Designing Bioinspired Composite Reinforcement Architectures Via 3D Magnetic Printing
,”
Nat. Commun.
,
6
, p.
8641
.
22.
Rich
,
J. P.
,
McKinley
,
G. H.
, and
Doyle
,
P. S.
,
2012
, “
Arrested Chain Growth During Magnetic Directed Particle Assembly in Yield Stress Matrix Fluids
,”
Langmuir
,
28
(
8
), pp.
3683
3689
.
23.
Pan
,
Y.
, and
Lu
,
L.
,
2016
, “
Additive Manufacturing of Magnetic Field-Responsive Smart Polymer Composites
,”
ASME
Paper No. MSEC2016-8865.
24.
Ginder
,
J. M.
, and
Davis
,
L. C.
,
1994
, “
Shear Stresses in Magnetorheological Fluids: Role of Magnetic Saturation
,”
Appl. Phys. Lett.
,
65
(
26
), pp.
3410
3412
.
25.
Ginder
,
J. M.
,
Elie
,
L. D.
, and
Davis
,
L. C.
,
1996
, “
Magnetic Fluid-Based Magnetorheological Fluids
,” Ford Motor Company, Dearborn, MI, U.S. Patent No.
5,549,837
.https://www.google.co.in/patents/US5549837
26.
Kittipoomwong
,
D.
,
Klingenberg
,
D. J.
, and
Ulicny
,
J. C.
,
2005
, “
Dynamic Yield Stress Enhancement in Bidisperse Magnetorheological Fluids
,”
J. Rheol.
,
49
(
6
), pp.
1521
1538
.
You do not currently have access to this content.