A high electrical and thermal conductivity coupled with low costs make copper (Cu) an enticing alternative to aluminum for the fabrication of interconnects in packaging applications. To tap into the benefits of the ever-reducing size of transistors, it is required to increase the input/output pin count on electronic chips, and thus, minimize the size of chip to board interconnects. Laser sintering of Cu nanoparticle (NP) inks can serve as a promising process for developing these micron sized, 3D interconnect structures. However, the exact processing windows for Cu NP sintering are not well known. Therefore, this paper presents an extensive experimental investigation of the sintering processing window with different lasers including femtosecond (fs), nanosecond (ns), and continuous-wave (CW) lasers. The dependence of the processing window on Cu layer thicknesses and laser exposure durations has also been investigated. A simplified model to estimate optimum laser sintering windows for Cu NPs using pulsed lasers is presented and the predicted estimates are compared against the experimental results. Given the simplicity of the model, it is shown to provide good estimates for fluence required for the onset of sintering and the processing window for good sintering of Cu NPs.

References

References
1.
Mack
,
C. A.
,
2011
, “
Fifty Years of Moore's Law
,”
IEEE Trans. Semicond. Manuf.
,
24
(
2
), pp.
202
207
.
2.
Roy
,
N.
,
Dibua
,
O.
,
Foong
,
C. S.
, and
Cullinan, M.
,
2017
, “
Preliminary Results on the Fabrication of Interconnect Structures Using Microscale Selective Laser Sintering
,”
ASME
Paper No. IPACK2017-74173.
3.
Theodorakos
,
I.
,
Zacharatos
,
F.
,
Geremia
,
R.
,
Karnakis
,
D.
, and
Zergioti
,
I.
,
2015
, “
Selective Laser Sintering of Ag Nanoparticles Ink for Applications in Flexible Electronics
,”
Appl. Surf. Sci.
,
336
, pp.
157
162
.
4.
Yu
,
X.
,
Mahajan
,
B. K.
,
Shou
,
W.
, and
Pan
,
H.
,
2016
, “
Materials, Mechanics, and Patterning Techniques for Elastomer-Based Stretchable Conductors
,”
Micromachines
,
8
(
1
), p.
7
.
5.
Roy
,
N. K.
,
Jou
,
W.
,
Feng
,
H.
,
Jeong
,
J.
,
Wang
,
Y.
, and
Cullinan
,
M.
,
2017
, “
Laser Sintering of Copper Nanoparticles: A Simplified Model for Fluence Estimation and Validation
,”
ASME
Paper No. MSEC2017-2975.
6.
Chen
,
C. W.
, and
Chen, J. K.
,
2016
, “
Femtosecond Laser Sintering of Copper Nanoparticles
,”
Appl. Phys. A
,
2016
, pp.
1
8
.
7.
Roy
,
N. K.
,
Foong
,
C. S.
, and
Cullinan
,
M. A.
,
2016
, “
Design of a Micro-Scale Selective Laser Sintering System
,”
Annual International Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 7–9, pp. 1495–1508.https://sffsymposium.engr.utexas.edu/sites/default/files/2016/120-Roy.pdf
8.
Roy
,
N. K.
, and
Cullinan
,
M. A.
,
2015
, “
μ-SLS of Metals: Design of the Powder Spreader, Powder Bed Actuators and Optics for the System
,”
Annual International Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 10–12, pp.
134
155
.https://sffsymposium.engr.utexas.edu/sites/default/files/2015/2015-11-Roy.pdf
9.
Roy
,
N.
,
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Design and Modeling of a Microscale Selective Laser Sintering System
,”
ASME
Paper No. MSEC2016-8569.
10.
Wünscher
,
S.
,
Abbel
,
R.
,
Perelaer
,
J.
, and
Schubert
,
U. S.
,
2014
, “
Progress of Alternative Sintering Approaches of Inkjet-Printed Metal Inks and Their Application for Manufacturing of Flexible Electronic Devices
,”
J. Mater. Chem. C
,
2
(
48
), pp.
10232
10261
.
11.
Son
,
Y.
,
Lim
,
T. W.
,
Yeo
,
J.
,
Ko
,
S. H.
, and
Yang
,
D.-Y.
,
2010
, “
Fabrication of Nanoscale Conductors by Selective Femptosecond Laser Sintering of Metal Nanoparticles
,”
Tenth IEEE International Conference on Nanotechnology
(
NANO
), Seoul, South Korea, Aug. 17–20, pp.
390
393
.
12.
An
,
K.
,
Hong
,
S.
,
Han
,
S.
,
Lee
,
H.
,
Yeo
,
J.
, and
Ko
,
S. H.
,
2014
, “
Selective Sintering of Metal Nanoparticle Ink for Maskless Fabrication of an Electrode Micropattern Using a Spatially Modulated Laser Beam by a Digital Micromirror Device
,”
ACS Appl. Mater. Interfaces
,
6
(
4
), pp.
2786
2790
.
13.
Watanabe
,
A.
,
2013
, “
Laser Sintering of Metal Nanoparticle Film
,”
J. Photopolym. Sci. Technol.
,
26
(
2
), pp.
199
205
.
14.
Zenou
,
M.
,
Ermak
,
O.
,
Saar
,
A.
, and
Kotler
,
Z.
,
2014
, “
Laser Sintering of Copper Nanoparticles
,”
J. Phys. D: Appl. Phys.
,
47
(
2
), p.
25501
.
15.
Harzic
,
R. L.
,
Huot
,
N.
,
Audouard
,
E.
,
Jonin
,
C.
,
Laporte
,
P.
,
Valette
,
S.
,
Fraczkiewicz
,
A.
,
Fortunier
,
R.
,
Harzic
,
R. L.
,
Huot
,
N.
,
Audouard
,
E.
,
Jonin
,
C.
, and
Laporte
,
P.
,
2016
, “
Comparison of Heat-Affected Zones Due to Nanosecond and Femtosecond Laser Pulses Using Transmission Electronic Microscopy
,”
Appl. Phys. Lett.
,
80
(
21
), pp.
3886
3888
.
16.
Ko
,
S. H.
,
2014
, “
Maskless Digital Manufacturing of Organic Thin Film Transistor by Femtosecond Laser Direct Patterning
,” World Automation Congress (
WAC
), Waikoloa, HI, Aug. 3–7, pp.
23
26
.
17.
Shirk
,
M. D.
, and
Molian
,
P. A.
,
1998
, “
A Review of Ultrashort Pulsed Laser Ablation of Materials
,”
J. Laser Appl.
,
10
(
1
), pp. 18–28.
18.
Gamaly
,
E. G.
,
Rode
,
A. V.
,
Luther-Davies
,
B.
, and
Tikhonchuk
,
V. T.
,
2002
, “
Ablation of Solids by Femtosecond Lasers: Ablation Mechanism and Ablation Thresholds for Metals and Dielectrics
,”
Phys. Plasmas
,
9
(
3
), pp.
949
957
.
19.
Kumpulainen
,
T.
,
Pekkanen
,
J.
,
Valkama
,
J.
,
Laakso
,
J.
,
Tuokko
,
R.
, and
Mäntysalo
,
M.
,
2011
, “
Low Temperature Nanoparticle Sintering With Continuous Wave and Pulse Lasers
,”
Opt. Laser Technol.
,
43
(
3
), pp.
570
576
.
20.
Wilson
,
J.
,
2007
, “
Thermal Diffusivity
,” ITEM Media, Plymouth Meeting, PA, accessed Sept. 15, 2016, https://www.electronics-cooling.com/2007/08/thermal-diffusivity/
21.
Yang
,
G.
,
Migone
,
A. D.
, and
Johnson
,
K. W.
,
1992
, “
Heat Capacity and Thermal Diffusivity of a Glass Sample
,”
Phys. Rev. B
,
45
(
1
), pp.
157
160
.
22.
Plech
,
A.
,
Kotaidis
,
V.
,
Grésillon
,
S.
,
Dahmen
,
C.
, and
Von Plessen
,
G.
,
2004
, “
Laser-Induced Heating and Melting of Gold Nanoparticles Studied by Time-Resolved X-Ray Scattering
,”
Phys. Rev. B
,
70
(
19
), p.
195423
.
23.
Moon
,
K.-S.
,
Dong
,
H.
,
Maric
,
R.
,
Pothukuchi
,
S.
,
Hunt
,
A.
,
Li
,
Y.
, and
Wong
,
C. P.
,
2005
, “
Thermal Behavior of Silver Nanoparticles for Low-Temperature Interconnect Applications
,”
J. Electron. Mater.
,
34
(
2
), pp.
168
175
.
24.
Bouguer
,
P.
,
1729
, “
Essai d'optique sur la gradation de la lumière
,” Charles-Antoine Jombert, Paris, France.
25.
Hultgren
,
R.
,
Desai
,
P. D.
,
Hawkins
,
D. T.
,
Gleiser
,
M.
, and
Kelley
,
K. K.
,
1973
,
Selected Values of the Thermodynamic Properties of the Elements
, American Society for Metals, Metals Park, OH, p. 636.
26.
Wolfram Research, 2017, “
Heat of Vaporization of the Elements
,” Wolfram Research, Inc., Champaign, IL, accessed Nov. 1, 2016, http://periodictable.com/Properties/A/VaporizationHeat.an.html
27.
Zhang
,
Y.
,
Tzou
,
D. Y.
, and
Chen
,
J. K.
,
2015
, “
Micro-and Nanoscale Heat Transfer in Femtosecond Laser Processing of Metals
,” e-print
arXiv:1511.03566
.https://arxiv.org/abs/1511.03566
28.
Jiang
,
H.
,
Moon
,
K.
,
Dong
,
H.
,
Hua
,
F.
, and
Wong
,
C. P.
,
2006
, “
Size-Dependent Melting Properties of Tin Nanoparticles
,”
Chem. Phys. Lett.
,
429
(
4
), pp.
492
496
.
29.
Bachels
,
T.
,
Güntherodt
,
H.-J.
, and
Schäfer
,
R.
,
2000
, “
Melting of Isolated Tin Nanoparticles
,”
Phys. Rev. Lett.
,
85
(
6
), pp.
1250
1253
.
30.
Preuss
,
S.
,
Demchuk
,
A.
, and
Stuke
,
M.
,
1995
, “
Sub-Picosecond UV Laser Ablation of Metals
,”
Appl. Phys. A: Mater. Sci. Process.
,
61
(1), pp.
33
37
.
31.
Cabalin
,
L. M.
, and
Laserna
,
J. J.
,
1998
, “
Experimental Determination of Laser Induced Breakdown Thresholds of Metals Under Nanosecond Q-Switched Laser Operation
,”
Spectrochim. Acta, Part B
,
53
(
5
), pp.
723
730
.
32.
Petzoldt
,
S.
,
Reif
,
J.
, and
Matthias
,
E.
,
1996
, “
Laser Plasma Threshold of Metals
,”
Appl. Surf. Sci.
,
96–98
, pp.
199
204
.
33.
Piepmeier
,
E. H.
,
1986
, “
Laser Ablation for Atomic Spectroscopy
,”
Analytical Applications of Lasers
, John Wiley & Sons, New York, pp.
627
669
.
34.
Moenke-Blankenburg
,
L.
,
1996
, “
Laser Ablation for Sample Introduction: Principles and Applications
,”
Laser in Analytical Atomic Spectroscopy
,
J.
Sneddon
,
T. L.
Thiem
, and
Y. I.
Lee
, eds., John Wiley & Sons, Hoboken, NJ, pp.
125
195
.
35.
Kaminskienė
,
Ž.
,
Prosyčevas
,
I.
,
Stonkutė
,
J.
, and
Guobienė
,
A.
,
2013
, “
Evaluation of Optical Properties of Ag, Cu, and Co Nanoparticles Synthesized in Organic Medium
,”
Acta Phys. Pol. A
,
123
(
1
), pp. 111–114.http://przyrbwn.icm.edu.pl/APP/PDF/123/a123z1p24.pdf
36.
Yeshchenko
,
O. A.
,
Dmitruk
,
I. M.
,
Dmytruk
,
A. M.
, and
Alexeenko
,
A. A.
,
2007
, “
Influence of Annealing Conditions on Size and Optical Properties of Copper Nanoparticles Embedded in Silica Matrix
,”
Mater. Sci. Eng., B
,
137
(
1
), pp.
247
254
.
37.
Jeng
,
M.-S.
,
Yang
,
R.
,
Song
,
D.
, and
Chen
,
G.
,
2008
, “
Modeling the Thermal Conductivity and Phonon Transport in Nanoparticle Composites Using Monte Carlo Simulation
,”
ASME J. Heat Transfer
,
130
(
4
), p.
042410
.
38.
Kim
,
W.
,
Zide
,
J.
,
Gossard
,
A.
,
Klenov
,
D.
,
Stemmer
,
S.
,
Shakouri
,
A.
, and
Majumdar
,
A.
,
2006
, “
Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors
,”
Phys. Rev. Lett.
,
96
(
4
), p.
45901
.
39.
Kruth
,
J.-P.
,
Mercelis
,
P.
,
Van Vaerenbergh
,
J.
,
Froyen
,
L.
, and
Rombouts
,
M.
,
2005
, “
Binding Mechanisms in Selective Laser Sintering and Selective Laser Melting
,”
Rapid Prototyping J.
,
11
(
1
), pp.
26
36
.
40.
Casalegno
,
V.
,
Vavassori
,
P.
,
Valle
,
M.
,
Ferraris
,
M.
,
Salvo
,
M.
, and
Pintsuk
,
G.
,
2010
, “
Measurement of Thermal Properties of a Ceramic/Metal Joint by Laser Flash Method
,”
J. Nucl. Mater.
,
407
(
2
), pp.
83
87
.
41.
Chichkov
,
B. N.
,
Momma
,
C.
,
Nolte
,
S.
,
Von Alvensleben
,
F.
, and
Tünnermann
,
A.
,
1996
, “
Femtosecond, Picosecond and Nanosecond Laser Ablation of Solids
,”
Appl. Phys. A
,
63
(
2
), pp.
109
115
.
42.
Farrell
,
H. H.
,
Petkovic
,
L. M.
,
Ginosar, D. M.
,
Rollins
,
H. W.
,
Burch, K. C.
, and
Pinhero, P. J.
, 2006, “
Sublimation Effects in Nanoparticle Catalysts at High Temperatures
,” ACS National Meeting, San Francisco, CA, Sept. 10–14, Paper No. 1155.
43.
Yim
,
J. W.
,
Xiang
,
B.
, and
Wu
,
J.
,
2009
, “
Sublimation of GeTe Nanowires and Evidence of Its Size Effect Studied by In Situ TEM
,”
J. Am. Chem. Soc.
,
131
(
40
), pp.
14526
14530
.
You do not currently have access to this content.