Photopolymerization enables the printing of three-dimensional (3D) objects through successively solidifying liquid photopolymer on two-dimensional (2D) planes. However, such layer-by-layer process significantly limits printing speed, because a large number of layers need to be processed in sequence. In this paper, we propose a novel 3D printing method based on multiphoton polymerization using femtosecond Bessel beam. This method eliminates the need for layer-by-layer processing, and therefore dramatically increases printing speed for structures with high aspect ratios, such as wires and tubes. By using unmodulated Bessel beam, a stationary laser exposure creates a wire with average diameter of 100 μm and length exceeding 10 mm, resulting in an aspect ratio > 100:1. Scanning this beam on the lateral plane fabricates a hollow tube within a few seconds, more than ten times faster than using the layer-by-layer method. Next, we modulate the Bessel beam with a spatial light modulator (SLM) and generate multiple beam segments along the laser propagation direction. Experimentally observed beam pattern agrees with optics diffraction calculation. This 3D printing method can be further explored for fabricating complex structures and has the potential to dramatically increase 3D printing speed while maintaining high resolution.

References

References
1.
Gibson
,
I.
,
Rosen
,
D.
, and
Stucker
,
B.
,
2015
,
Additive Manufacturing Technologies
,
Springer
,
New York
.
2.
Oropallo
,
W.
, and
Piegl
,
L. A.
,
2016
, “
Ten Challenges in 3D Printing
,”
Eng. Comput.
,
32
(
1
), pp.
135
148
.
3.
LaFratta
,
C. N.
, and
Li
,
L.
,
2016
,
Three-Dimensional Microfabrication Using Two-Photon Polymerization
, William Andrew Publishing, Oxford, UK, pp.
221
241
.
4.
Tumbleston
,
J. R.
,
Shirvanyants
,
D.
,
Ermoshkin
,
N.
,
Janusziewicz
,
R.
,
Johnson
,
A. R.
,
Kelly
,
D.
,
Chen
,
K.
,
Pinschmidt
,
R.
,
Rolland
,
J. P.
,
Ermoshkin
,
A.
,
Samulski
,
E. T.
, and
DeSimone
,
J. M.
,
2015
, “
Continuous Liquid Interface Production of 3D Objects
,”
Science
,
347
(
6228
), pp.
1349
1352
.
5.
Jacobs
,
P. F.
,
1992
,
Rapid Prototyping & Manufacturing: Fundamentals of Stereolithography
,
Society of Manufacturing Engineers
,
Dearborn, MI
.
6.
Baldacchini
,
T.
,
2016
,
Three-Dimensional Microfabrication Using Two-Photon Polymerization: Fundamentals, Technology, and Applications
, William Andrew Publishing, Oxford, UK.
7.
Chatwin
,
C.
,
Farsari
,
M.
,
Huang
,
S.
,
Heywood
,
M.
,
Birch
,
P.
,
Young
,
R.
, and
Richardson
,
J.
,
1998
, “
UV Microstereolithography System That Uses Spatial Light Modulator Technology
,”
Appl. Opt.
,
37
(
32
), pp.
7514
22
.
8.
Sun
,
C.
,
Fang
,
N.
,
Wu
,
D. M.
, and
Zhang
,
X.
,
2005
, “
Projection Micro-Stereolithography Using Digital Micro-Mirror Dynamic Mask
,”
Sens. Actuators A
,
121
(
1
), pp.
113
120
.
9.
Vizsnyiczai
,
G.
,
Kelemen
,
L.
, and
Ormos
,
P.
,
2014
, “
Holographic Multi-Focus 3D Two-Photon Polymerization With Real-Time Calculated Holograms
,”
Opt. Express
,
22
(20), pp.
24217
24223
.
10.
Yang
,
L.
,
Qian
,
D.
,
Xin
,
C.
,
Hu
,
Z.
,
Ji
,
S.
,
Wu
,
D.
,
Hu
,
Y.
,
Li
,
J.
,
Huang
,
W.
, and
Chu
,
J.
,
2017
, “
Two-Photon Polymerization of Microstructures by a Non-Diffraction Multifoci Pattern Generated From a Superposed Bessel Beam
,”
Opt. Lett.
,
42
(
4
), pp.
743
746
.
11.
Malinauskas
,
M.
,
Žukauskas
,
A.
,
Purlys
,
V.
,
Belazaras
,
K.
,
Momot
,
A.
,
Paipulas
,
D.
,
Gadonas
,
R.
,
Piskarskas
,
A.
,
Gilbergs
,
H.
,
Gaidukevičiūtė
,
A.
,
Sakellari
,
I.
,
Farsari
,
M.
, and
Juodkazis
,
S.
,
2010
, “
Femtosecond Laser Polymerization of Hybrid/Integrated Micro-Optical Elements and Their Characterization
,”
J. Opt.
,
12
(
12
), p.
124010
.
12.
Campbell
,
M.
,
Sharp
,
D. N.
,
Harrison
,
M. T.
,
Denning
,
R. G.
, and
Turberfield
,
A. J.
,
2000
, “
Fabrication of Photonic Crystals for the Visible Spectrum by Holographic Lithography
,”
Nature
,
404
(
6773
), pp.
53
56
.
13.
Shoji
,
S.
, and
Kawata
,
S.
,
2000
, “
Photofabrication of Three-Dimensional Photonic Crystals by Multibeam Laser Interference Into a Photopolymerizable Resin
,”
Appl. Phys. Lett.
,
76
(
19
), pp.
2668
2670
.
14.
Burrow
,
G. M.
,
Leibovici
,
M. C. R.
, and
Gaylord
,
T. K.
,
2012
, “
Pattern-Integrated Interference Lithography: Single-Exposure Fabrication of Photonic-Crystal Structures
,”
Appl. Opt.
,
51
(
18
), pp.
4028
4041
.
15.
Shusteff
,
M.
,
Panas
,
R. M.
,
Henriksson
,
J.
,
Kelly
,
B. E.
,
Browar
,
A. E. M.
,
Fang
,
N. X.
,
Spadaccini
,
C. M.
,
Shusteff
,
M.
,
Panas
,
R. M.
,
Henriksson
,
J.
,
Kelly
,
B. E.
,
Browar
,
A. E. M.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2016
, “
Additive Fabrication of 3D Structures by Holographic Lithography
,”
27th Annual Solid Freeform Fabrication Symposium
(
SFF
), Austin, TX, Aug. 8–10, pp.
1183
1192
.https://sffsymposium.engr.utexas.edu/sites/default/files/2016/096-Shusteff.pdf
16.
Dickey
,
F. M.
,
2014
,
Laser Beam Shaping: Theory and Techniques
,
2nd ed.
,
CRC Press
, Boca Raton, FL.
17.
Whyte
,
G.
, and
Courtial
,
J.
,
2005
, “
Experimental Demonstration of Holographic Three-Dimensional Light Shaping Using a Gerchberg–Saxton Algorithm
,”
New J. Phys.
,
7
, p.
117
.
18.
Mathis
,
A.
,
Courvoisier
,
F.
,
Froehly
,
L.
,
Furfaro
,
L.
,
Jacquot
,
M.
,
Lacourt
,
P. A.
, and
Dudley
,
J. M.
,
2012
, “
Micromachining Along a Curve: Femtosecond Laser Micromachining of Curved Profiles in Diamond and Silicon Using Accelerating Beams
,”
Appl. Phys. Lett.
,
101
(
7
), pp.
99
102
.
19.
Ren
,
H.
,
Lin
,
H.
,
Li
,
X.
, and
Gu
,
M.
,
2014
, “
Three-Dimensional Parallel Recording With a Debye Diffraction-Limited and Aberration-Free Volumetric Multifocal Array
,”
Opt. Lett.
,
39
(
6
), pp.
1621
1624
.
20.
Jabbour
,
T. G.
, and
Kuebler
,
S. M.
,
2008
, “
Particle-Swarm Optimization of Axially Superresolving Binary-Phase Diffractive Optical Elements
,”
Opt. Lett.
,
33
(
13
), pp.
1533
1535
.
21.
Turunen
,
J.
, and
Friberg
,
A. T.
,
2010
, “
Chapter 1—Propagation-Invariant Optical Fields
,”
Prog. Opt.
,
54
, pp.
1
88
.
22.
Yu
,
X.
,
Ma
,
J.
, and
Lei
,
S.
,
2015
, “
Femtosecond Laser Scribing of Mo Thin Film on Flexible Substrate Using Axicon Focused Beam
,”
J. Manuf. Process.
,
20
(Part 1), pp.
349
355
.
23.
Yu
,
X.
,
Trallero-Herrero
,
C. A.
, and
Lei
,
S.
,
2016
, “
Materials Processing With Superposed Bessel Beams
,”
Appl. Surf. Sci.
,
360
(Part B), pp.
833
839
.
24.
Bhuyan
,
M. K.
,
Courvoisier
,
F.
,
Lacourt
,
P. A.
,
Jacquot
,
M.
,
Salut
,
R.
,
Furfaro
,
L.
, and
Dudley
,
J. M.
,
2010
, “
High Aspect Ratio Nanochannel Machining Using Single Shot Femtosecond Bessel Beams
,”
Appl. Phys. Lett.
,
97
(
8
), p.
81102
.
25.
Xie
,
C.
,
Jukna
,
V.
,
Milián
,
C.
,
Giust
,
R.
,
Ouadghiri-Idrissi
,
I.
,
Itina
,
T.
,
Dudley
,
J. M.
,
Couairon
,
A.
, and
Courvoisier
,
F.
,
2015
, “
Tubular Filamentation for Laser Material Processing
,”
Sci. Rep.
,
5
, p.
8914
.
26.
Courvoisier
,
F.
,
Lacourt
,
P.-A.
,
Jacquot
,
M.
,
Bhuyan
,
M. K.
,
Furfaro
,
L.
, and
Dudley
,
J. M.
,
2009
, “
Surface Nanoprocessing With Nondiffracting Femtosecond Bessel Beams
,”
Opt. Lett.
,
34
(
20
), p.
3163
.
27.
Jezek
,
J.
,
Cizmár
,
T.
,
Nedela
,
V.
, and
Zemánek
,
P.
,
2006
, “
Formation of Long and Thin Polymer Fiber Using Nondiffracting Beam
,”
Opt. Express
,
14
(
19
), pp.
8506
8515
.
28.
Yang
,
L.
,
El-Tamer
,
A.
,
Hinze
,
U.
,
Li
,
J.
,
Hu
,
Y.
,
Huang
,
W.
,
Chu
,
J.
, and
Chichkov
,
B. N.
,
2014
, “
Two-Photon Polymerization of Cylinder Microstructures by Femtosecond Bessel Beams
,”
Appl. Phys. Lett.
,
105
(
4
), p.
41110
.
29.
Tomova
,
Z.
,
Liaros
,
N.
,
Gutierrez Razo
,
S. A.
,
Wolf
,
S. M.
, and
Fourkas
,
J. T.
,
2016
, “
In Situ Measurement of the Effective Nonlinear Absorption Order in Multiphoton Photoresists
,”
Laser Photon. Rev.
,
10
(
5
), pp.
849
854
.
30.
Shoji
,
S.
,
Kawata
,
S.
,
Sukhorukov
,
A. A.
, and
Kivshar
,
Y. S.
,
2002
, “
Self-Written Waveguides in Photopolymerizable Resins
,”
Opt. Lett.
,
27
(
3
), pp.
185
187
.
31.
Hohmann
,
J. K.
,
Renner
,
M.
,
Waller
,
E. H.
, and
von Freymann
,
G.
,
2015
, “
Three-Dimensional Μ-Printing: An Enabling Technology
,”
Adv. Opt. Mater.
,
3
(
11
), pp.
1488
1507
.
32.
Cizmár
,
T.
, and
Dholakia
,
K.
,
2009
, “
Tunable Bessel Light Modes: Engineering the Axial Propagation
,”
Opt. Express
,
17
(
18
), pp.
15558
15570
.
33.
Saha
,
S. K.
,
Divin
,
C.
,
Cuadra
,
J. A.
, and
Panas
,
R. M.
,
2017
, “
Effect of Proximity of Features on the Damage Threshold During Submicron Additive Manufacturing Via Two-Photon Polymerization
,”
J. Micro Nano-Manuf.
,
5
(
3
), p.
31002
.
34.
Formlabs, 2017, “
Formlabs
,” Formlabs, Somerville, MA, accessed Nov. 20, 2017, https://formlabs.com/
35.
Voelz
,
D. G.
,
2011
,
Computational Fourier Optics: A MATLAB® Tutorial
, Society of Photo Optical, Bellingham, WA.
36.
Litvin
,
I. A.
,
Dudley
,
A.
,
Roux
,
F. S.
, and
Forbes
,
A.
,
2012
, “
Azimuthal Decomposition With Digital Holograms
,”
Opt. Express
,
20
(
10
), pp.
10996
11004
.
You do not currently have access to this content.