Laser microprocessing is a very attractive option for a growing number of industrial applications due to its intrinsic characteristics, such as high flexibility and process control and also capabilities for noncontact processing of a wide range of materials. However, there are some constrains that limit the applications of this technology, i.e., taper angles on sidewalls, edge quality, geometrical accuracy, and achievable aspect ratios of produced structures. To address these process limitations, a new method for two-side laser processing is proposed in this research. The method is described with a special focus on key enabling technologies for achieving high accuracy and repeatability in two-side laser drilling. The pilot implementation of the proposed processing configuration and technologies is discussed together with an in situ, on-machine inspection procedure to verify the achievable positional and geometrical accuracy. It is demonstrated that alignment accuracy better than 10 μm is achievable using this pilot two-side laser processing platform. In addition, the morphology of holes with circular and square cross sections produced with one-side laser drilling and the proposed method was compared in regard to achievable aspect ratios and holes' dimensional and geometrical accuracy and thus to make conclusions about its capabilities.

References

References
1.
Özel
,
T.
,
2009
, “
Editorial: Special Section on Micromanufacturing Processes and Applications
,”
Mater. Manuf. Processes
,
24
(
12
), p. 1235.
2.
Chavoshi
,
S. Z.
, and
Luo
,
X.
,
2015
, “
Hybrid Micro-Machining Processes: A Review
,”
Precis. Eng.
,
41
, pp.
1
23
.
3.
Luo
,
X.
,
Cheng
,
K.
,
Webb
,
D.
, and
Wardle
,
F.
,
2005
, “
Design of Ultraprecision Machine Tools With Applications to Manufacture of Miniature and Micro Components
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
515
528
.
4.
Leo Kumar
,
S. P.
,
Jerald
,
J.
,
Kumanan
,
S.
, and
Prabakaran
,
R.
,
2014
, “
A Review on Current Research Aspects in Tool-Based Micromachining Processes
,”
Mater. Manuf. Processes
,
29
(
11–12
), pp.
1291
1337
.
5.
Al-Ahmari
,
A. M. A.
,
Rasheed
,
M. S.
,
Mohammad
,
M. K.
, and
Saleh
,
T.
,
2016
, “
A Hybrid Machining Process Combining Micro-EDM and Laser Beam Machining of Nickel–Titanium-Based Shape Memory Alloy
,”
Mater. Manuf. Processes
,
31
(
4
), pp.
447
455
.
6.
Dandekar
,
C. R.
,
Shin
,
Y. C.
, and
Barnes
,
J.
,
2010
, “
Machinability Improvement of Titanium Alloy (Ti–6Al–4V) Via LAM and Hybrid Machining
,”
Int. J. Mach. Tools Manuf.
,
50
(
2
), pp.
174
182
.
7.
Adelmann
,
B.
, and
Hellmann
,
R.
,
2015
, “
Rapid Micro Hole Laser Drilling in Ceramic Substrates Using Single Mode Fiber Laser
,”
J. Mater. Process. Technol.
,
221
, pp.
80
86
.
8.
Choi
,
W. C.
, and
Ryu
,
J. Y.
,
2012
, “
Fabrication of a Guide Block for Measuring a Device With Fine Pitch Area-Arrayed Solder Bumps
,”
Microsyst. Technol.
,
18
(
3
), pp.
333
339
.
9.
Watanabe
,
N.
,
Suzuki
,
M.
,
Kawano
,
K.
,
Eto
,
M.
, and
Aoyagi
,
M.
,
2014
, “
Fabrication of a Membrane Probe Card Using Transparent Film for Three-Dimensional Integrated Circuit Testing
,”
Jpn. J. Appl. Phys.
,
53
(
6S
), p. 06JM06.
10.
Choi
,
W. C.
, and
Ryu
,
J. Y.
,
2011
, “
A MEMS Guide Plate for a High Temperature Testing of a Wafer Level Packaged Die Wafer
,”
Microsyst. Technol.
,
17
(
1
), pp.
143
148
.
11.
Huang
,
H.
,
Yang
,
L. M.
, and
Liu
,
J.
,
2014
, “
Micro-Hole Drilling and Cutting Using Femtosecond Fiber Laser
,”
Opt. Eng.
,
53
(
5
), p. 051513.
12.
Lim
,
H. S.
,
Wong
,
Y. S.
,
Rahman
,
M.
, and
Edwin Lee
,
M. K.
,
2003
, “
A Study on the Machining of High-Aspect Ratio Micro-Structures Using Micro-EDM
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
318
325
.
13.
Wang
,
X. C.
,
Zheng
,
H. Y.
,
Chu
,
P. L.
,
Tan
,
J. L.
,
Teh
,
K. M.
,
Liu
,
T.
,
Ang
,
B. C. Y.
, and
Tay
,
G. H.
,
2010
, “
Femtosecond Laser Drilling of Alumina Ceramic Substrates
,”
Appl. Phys. A: Mater. Sci. Process.
,
101
(
2
), pp.
271
278
.
14.
Khan
,
A. H.
,
Celotto
,
S.
,
Tunna
,
L.
,
O'Neill
,
W.
, and
Sutcliffe
,
C. J.
,
2007
, “
Influence of Microsupersonic Gas Jets on Nanosecond Laser Percussion Drilling
,”
Opt. Lasers Eng.
,
45
(
6
), pp.
709
718
.
15.
Khan
,
A. H.
,
O'Neill
,
W.
,
Tunna
,
L.
, and
Sutcliffe
,
C. J.
,
2006
, “
Numerical Analysis of Gas-Dynamic Instabilities During the Laser Drilling Process
,”
Opt. Lasers Eng.
,
44
(
8
), pp.
826
841
.
16.
Hsu
,
J. C.
,
Lin
,
W. Y.
,
Chang
,
Y. J.
,
Ho
,
C. C.
, and
Kuo
,
C. L.
,
2015
, “
Continuous-Wave Laser Drilling Assisted by Intermittent Gas Jets
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1–4
), pp.
449
459
.
17.
Ho
,
C. C.
,
Chen
,
Y. M.
,
Hsu
,
J. C.
,
Chang
,
Y. J.
, and
Kuo
,
C. L.
,
2015
, “
Characteristics of the Effect of Swirling Gas Jet Assisted Laser Percussion Drilling Based on Machine Vision
,”
J. Laser Appl.
,
27
(
4
), p. 042001.
18.
Li
,
Q. K.
,
Chen
,
Q. D.
,
Niu
,
L. G.
,
Yu
,
Y. H.
,
Wang
,
L.
,
Sun
,
Y. L.
, and
Sun
,
H. B.
,
2016
, “
Sapphire-Based Dammann Gratings for UV Beam Splitting
,”
IEEE Photonics J.
,
8
(
6
), pp.
1
8
.
19.
Juodkazis
,
S.
,
Nishimura
,
K.
,
Tanaka
,
S.
,
Misawa
,
H.
,
Gamaly
,
E. G.
,
Luther-Davies
,
B.
,
Hallo
,
L.
,
Nicolai
,
P.
, and
Tikhonchuk
,
V. T.
,
2006
, “
Laser-Induced Microexplosion Confined in the Bulk of a Sapphire Crystal: Evidence of Multimegabar Pressures
,”
Phys. Rev. Lett.
,
96
(
16
), p.
166101
.
20.
Lott
,
G.
,
Falletto
,
N.
,
Devilder
,
P. J.
, and
Kling
,
R.
,
2016
, “
Optimizing the Processing of Sapphire With Ultrashort Laser Pulses
,”
J. Laser Appl.
,
28
(
2
), p. 022206.
21.
Zhang
,
H.
,
Di
,
J.
,
Zhou
,
M.
,
Yan
,
Y.
, and
Wang
,
R.
,
2015
, “
An Investigation on the Hole Quality During Picosecond Laser Helical Drilling of Stainless Steel 304
,”
Appl. Phys. A: Mater. Sci. Process.
,
119
(
2
), pp.
745
752
.
22.
Zhang
,
Y.
,
Wang
,
Y.
,
Zhang
,
J.
,
Liu
,
Y.
,
Yang
,
X.
, and
Zhang
,
Q.
,
2015
, “
Micromachining Features of TiC Ceramic by Femtosecond Pulsed Laser
,”
Ceram. Int.
,
41
(
5
), pp.
6525
6533
.
23.
Tokarev
,
V. N.
,
Cheshev
,
E. A.
,
Bezotosnyi
,
V. V.
,
Khomich
,
V. Y.
,
Mikolutskiy
,
S. I.
, and
Vasil'yeva
,
N. V.
,
2015
, “
Optimization of Plasma Effect in Laser Drilling of High Aspect Ratio Microvias
,”
Laser Phys.
,
25
(
5
), p. 056003.
24.
Penchev
,
P.
,
Nasrollahi
,
V.
, and
Dimov
,
S.
,
2016
, “
Laser Micro-Machining Method for Producing High Aspect Ratio Features
,”
11th International Conference on Micro Manufacturing
(ICOMM), Orange County, CA, Mar. 29–31, Paper No. 37.
25.
Nasrollahi
,
V.
,
Penchev
,
P.
, and
Dimov
,
S.
,
2016
, “
A New Laser Drilling Method for Producing High Aspect Ratio Micro Through Holes
,”
4M/IWMF Conference
, Lyngby, Denmark, Sept. 13–15, p. 741.
26.
Penchev
,
P.
,
Shang
,
X.
,
Dimov
,
S.
, and
Lancaster
,
M.
,
2016
, “
Novel Manufacturing Route for Scale Up Production of Terahertz Technology Devices
,”
ASME J. Micro Nano-Manuf.
,
4
(
2
), p.
021002
.
27.
Wang
,
G. Q.
,
Li
,
H. S.
,
Qu
,
N. S.
, and
Zhu
,
D.
,
2016
, “
Investigation of the Hole-Formation Process During Double-Sided Through-Mask Electrochemical Machining
,”
J. Mater. Process. Technol.
,
234
, pp.
95
101
.
28.
Goya
,
K.
,
Itoh
,
T.
,
Seki
,
A.
, and
Watanabe
,
K.
,
2015
, “
Efficient Deep-Hole Drilling by a Femtosecond, 400 nm Second Harmonic Ti:Sapphire Laser for a Fiber Optic In-Line/Pico-Liter Spectrometer
,”
Sens. Actuators B
,
210
, pp.
685
691
.
29.
VanderWert
,
T. L.
,
1993
, “
Laser Processing Aircraft and Turbine Engine Parts
,”
SAE
Paper No. 931356.
30.
Sivarao
,
S.
,
Thiru
,
S.
,
Jusoff
,
K.
,
Tan
,
C. F.
,
Anand
,
T. J. S.
, and
Abdullah
,
A.
,
2013
, “
Establishing a Hybrid Laser Lathing Technology
,”
World Appl. Sci. J.
,
21
(
S2
), pp.
53
59
.
31.
Ocaña
,
J. L.
,
Molpeceres
,
C.
,
Garcia-Ballesteros
,
J. J.
,
Lauzurica
,
S.
, and
Iordachescu
,
D.
,
2011
, “
Micromachining of 2D–3D Structures With High Intensity Laser Pulses
,”
J. Optoelectron. Adv. Mater.
,
13
(
8
), pp.
976
980
.
32.
Kawamura
,
Y.
,
Kai
,
A.
, and
Yoshii
,
K.
,
2010
, “
Various Kinds of Pulsed Ultraviolet Laser Micromachinings Using a Five Axis Microstage
,”
J. Laser Micro Nanoeng.
,
5
(
2
), pp.
163
168
.
33.
Jin
,
S. Y.
,
Lee
,
K. T.
, and
Kim
,
K.
,
2006
, “
Volumetric Error Compensation of Multi-Axis Laser Machining Center for Direct Patterning of Flat Panel Display
,”
ASME J. Manuf. Sci. Eng.
,
128
(
1
), pp.
239
248
.
34.
Bhaduri
,
D.
,
Penchev
,
P.
,
Dimov
,
S.
, and
Soo
,
S. L.
,
2016
, “
An Investigation of Accuracy, Repeatability and Reproducibility of Laser Micromachining Systems
,”
Measurement
,
88
, pp.
248
261
.
35.
Kim
,
K.
,
Yoon
,
K.
,
Suh
,
J.
, and
Lee
,
J.
,
2011
, “
Laser Scanner Stage On-the-Fly Method for Ultrafast and Wide Area Fabrication
,”
Phys. Procedia
,
12
(Pt. B), pp.
452
458
.
36.
Penchev
,
P.
,
Dimov
,
S.
,
Bhaduri
,
D.
,
Soo
,
S. L.
, and
Crickboom
,
B.
,
2017
, “
Generic Software Tool for Counteracting the Dynamics Effects of Optical Beam Delivery Systems
,”
Proc. Inst. Mech. Eng., Part B
,
231
(
1
), pp.
48
64
.
37.
Penchev
,
P.
,
Dimov
,
S.
, and
Bhaduri
,
D.
,
2016
, “
Experimental Investigation of 3D Scanheads for Laser Micro-Processing
,”
Opt. Laser Technol.
,
81
, pp.
55
59
.
38.
Penchev
,
P.
,
Dimov
,
S.
,
Bhaduri
,
D.
, and
Soo
,
S. L.
,
2016
, “
Generic Integration Tools for Reconfigurable Laser Micromachining Systems
,”
J. Manuf. Syst.
,
38
, pp.
27
45
.
39.
Ramesh
,
R.
,
Mannan
,
M. A.
, and
Poo
,
A. N.
,
2000
, “
Error Compensation in Machine Tools—A Review: Part I: Geometric, Cutting-Force Induced and Fixture-Dependent Errors
,”
Int. J. Mach. Tools Manuf.
,
40
(
9
), pp.
1235
1256
.
40.
Schwenke
,
H.
,
Knapp
,
W.
,
Haitjema
,
H.
,
Weckenmann
,
A.
,
Schmitt
,
R.
, and
Delbressine
,
F.
,
2008
, “
Geometric Error Measurement and Compensation of Machines—An Update
,”
CIRP Ann. Manuf. Technol.
,
57
(
2
), pp.
660
675
.
41.
Schmitt
,
R.
,
Mallmann
,
G.
,
Winands
,
K.
, and
Pothen
,
M.
,
2012
, “
Inline Process Metrology System for the Control of Laser Surface Structuring Processes
,”
Phys. Procedia
,
39
, pp.
814
822
.
42.
BIPM, IFCC, ISO, IEC, IUPAC, ILAC, IUPAP, and OIML
,
2008
, “
Evaluation of Measurement Data—Guide to the Expression of Uncertainty in Measurement
,” Joint Committee for Guides in Metrology, Sèvres, France, Technical Report No.
JCGM 100
.
43.
Dergez
,
D.
,
Schneider
,
M.
,
Bittner
,
A.
, and
Schmid
,
U.
,
2015
, “
Mechanical and Electrical Properties of DC Magnetron Sputter Deposited Amorphous Silicon Nitride Thin Films
,”
Thin Solid Films
,
589
, pp.
227
232
.
44.
Artigas
,
R.
,
2011
,
Imaging Confocal Microscopy, in Optical Measurement of Surface Topography
,
R.
Leach
, ed.,
Springer
,
Berlin
, pp.
237
286
.
45.
Chen
,
C. N.
, and
Huang
,
J. J.
,
2013
, “
Characteristics of Thin-Film Transistors Based on Silicon Nitride Passivation by Excimer Laser Direct Patterning
,”
Thin Solid Films
,
529
, pp.
449
453
.
46.
Poulain
,
G.
,
Blanc
,
D.
,
Focsa
,
A.
,
De Vita
,
M.
,
Semmache
,
B.
,
Gauthier
,
M.
,
Pellegrin
,
Y.
, and
Lemiti
,
M.
,
2012
, “
Laser Ablation Mechanism of Silicon Nitride Layers in a Nanosecond UV Regime
,”
Energy Procedia
,
27
, pp.
516
521
.
47.
Ho
,
C. Y.
, and
Lu
,
J. K.
,
2003
, “
A Closed Form Solution for Laser Drilling of Silicon Nitride and Alumina Ceramics
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
260
263
.
48.
Atanasov
,
P. A.
,
Eugenieva
,
E. D.
, and
Nedialkov
,
N. N.
,
2001
, “
Laser Drilling of Silicon Nitride and Alumina Ceramics: A Numerical and Experimental Study
,”
J. Appl. Phys.
,
89
(
4
), pp.
2013
2016
.
You do not currently have access to this content.