This paper reports a feasibility study that demonstrates the implementation of a computer-aided design and manufacturing (CAD/CAM) approach for producing two-dimensional (2D) patterns on the nanoscale using the atomic force microscope (AFM) tip-based nanomachining process. To achieve this, simple software tools and neutral file formats were used. A G-code postprocessor was also developed to ensure that the controller of the AFM equipment utilized could interpret the G-code representation of tip path trajectories generated using the computer-aided manufacturing (CAM) software. In addition, the error between a machined pattern and its theoretical geometry was also evaluated. The analyzed pattern covered an area of 20 μm × 20 μm. The average machined error in this case was estimated to be 66 nm. This value corresponds to 15% of the average width of machined grooves. Such machining errors are most likely due to the flexible nature of AFM probe cantilevers. Overall, it is anticipated that such a CAD/CAM approach could contribute to the development of a more flexible and portable solution for a range of tip-based nanofabrication tasks, which would not be restricted to particular customised software or AFM instruments. In the case of nanomachining operations, however, further work is required first to generate trajectories, which can compensate for the observed machining errors.

References

1.
Binnig
,
G.
,
Quate
,
C. F.
, and
Gerber
,
Ch.
,
1986
, “
Atomic Force Microscope
,”
Phys. Rev. Lett.
,
56
(
9
), pp.
930
934
.
2.
Tseng
,
A. A.
,
Notargiacomo
,
A.
, and
Chen
,
T. P.
,
2005
, “
Nanofabrication by Scanning Probe Microscope Lithography: A Review
,”
J. Vac. Sci. Technol. B
,
23
(
3
), pp.
877
894
.
3.
Xie
,
X. N.
,
Chung
,
H. J.
,
Sow
,
C. H.
, and
Wee
,
A. T. S.
,
2006
, “
Nanoscale Materials Patterning and Engineering by Atomic Force Microscopy Nanolithography
,”
Mater. Sci. Eng.
,
54
(
1–2
), pp.
1
48
.
4.
Tseng
,
A. A.
,
2011
, “
Removing Material Using Atomic Force Microscopy With Single- and Multiple-Tip Sources
,”
Small
,
7
(
24
), pp.
3409
3427
.
5.
Yan
,
Y. D.
,
Geng
,
Y.
, and
Hu
,
Z.
,
2015
, “
Recent Advances in AFM Tip-Based Nanomechanical Machining
,”
Int. J. Mach. Tools Manuf.
,
99
, pp.
1
18
.
6.
Jung
,
T. A.
,
Moser
,
A.
,
Hug
,
H. J.
,
Brodbeck
,
D.
,
Hofer
,
R.
,
Hidber
,
H. R.
, and
Schwarz
,
U. D.
,
1992
, “
The Atomic Force Microscope Used as a Powerful Tool for Machining Surfaces
,”
Ultramicroscopy
,
42–44
(Part 2), pp.
1446
1451
.
7.
Jin
,
X.
, and
Unertl
,
W. N.
,
1992
, “
Submicrometer Modification of Polymer Surfaces With a Surface Force Microscope
,”
Appl. Phys. Lett.
,
61
(
6
), pp.
657
659
.
8.
Kim
,
Y.
, and
Lieber
,
C. M.
,
1992
, “
Machining Oxide Thin Films With an Atomic Force Microscope: Pattern and Object Formation on the Nanometer Scale
,”
Science
,
257
(
5068
), pp.
375
377
.
9.
Schumacher
,
H. W.
,
Keyser
,
U. F.
,
Zeitler
,
U.
,
Haug
,
R. J.
, and
Eberl
,
K.
,
2000
, “
Controlled Mechanical AFM Machining of Two-Dimensional Electron Systems: Fabrication of a Single Electron Transistor
,”
Physica E
,
6
(
1–4
), pp.
860
863
.
10.
Notargiacomo
,
A.
,
Foglietti
,
V.
,
Cianci
,
E.
,
Capellini
,
G.
,
Adami
,
M.
,
Faraci
,
P.
,
Evangelisti
,
F.
, and
Nicolini
,
C.
,
1999
, “
Atomic Force Microscopy Lithography as a Nanodevice Development Technique
,”
Nanotechnology
,
10
(
4
), pp.
458
463
.
11.
Ngunjiri
,
J.
, and
Garno
,
J. C.
,
2008
, “
AFM-Based Lithography for Nanoscale Protein Assays
,”
Anal. Chem.
,
80
(
5
), pp.
1361
1369
.
12.
Gozen
,
B. A.
, and
Ozdoganlar
,
O. B.
,
2012
, “
Design and Evaluation of a Mechanical Nanomanufacturing System for Nanomilling
,”
Precis. Eng.
,
36
(
1
), pp.
19
30
.
13.
Yan
,
Y. D.
,
Hu
,
Z.
,
Zhao
,
X.
,
Sun
,
T.
,
Dong
,
S.
, and
Li
,
X.
,
2010
, “
Top-Down Nanomechanical Machining of Three-Dimensional Nanostructures by Atomic Force Microscopy
,”
Small
,
6
(
6
), pp.
724
728
.
14.
Geng
,
Y.
,
Yan
,
Y.
,
Xing
,
Y.
,
Zhao
,
X.
, and
Hu
,
Z.
,
2013
, “
Modelling and Experimental Study of Machined Depth in AFM-Based Milling of Nanochannels
,”
Int. J. Mach. Tools Manuf.
,
73
, pp.
87
96
.
15.
Brousseau
,
E. B.
,
Krohs
,
F.
,
Caillaud
,
E.
,
Dimov
,
S.
,
Gibaru
,
O.
, and
Fatikow
,
S.
,
2010
, “
Development of a Novel Process Chain Based on Atomic Force Microscopy Scratching for Small and Medium Series Production of Polymer Nano Structured Components
,”
ASME J. Manuf. Sci. Eng.
,
132
(
3
), p.
030901
.
16.
Horcas
,
I.
,
Fernández
,
R.
,
Gómez-Rodríguez
,
J. M.
,
Colchero
,
J.
,
Gómez-Herrero
,
J.
, and
Baro
,
A. M.
,
2007
, “
WSXM: A Software for Scanning Probe Microscopy and a Tool for Nanotechnology
,”
Rev. Sci. Instrum.
,
78
(
1
), p.
013705
.
17.
Lekki
,
J.
,
Kumar
,
S.
,
Parihar
,
S. S.
,
Grange
,
S.
,
Baur
,
C.
,
Foschia
,
R.
, and
Kulik
,
A.
,
2004
, “
Data Coding Tools for Color-Coded Vector Lithography
,”
Rev. Sci. Instrum.
,
75
(
11
), pp.
4646
4650
.
18.
Klehn
,
B.
, and
Kunze
,
U.
,
1999
, “
Nanolithography With an Atomic Force Microscope by Means of Vector-Scan Controlled Dynamic Plowing
,”
J. Appl. Phys.
,
85
(
7
), pp.
3897
3903
.
19.
Cruchon-Dupeyrat
,
S.
,
Porthun
,
S.
, and
Liu
,
G.-Y.
,
2001
, “
Nanofabrication Using Computer-Assisted Design and Automated Vector-Scanning Probe Lithography
,”
Appl. Surf. Sci.
,
175–176
, pp.
636
642
.
20.
Xu
,
K.
,
Yang
,
S.-C.
, and
Qian
,
X.
,
2013
, “
Integrating Computer-Aided Design and Nano-Indentation for Complex Lithograph
,”
ASME J. Micro Nano-Manuf.
,
1
(
1
), p.
011002
.
21.
Johannes
,
M. S.
,
Kuniholm
,
J. F.
,
Cole
,
D. G.
, and
Clark
,
R. L.
,
2006
, “
Automated CAD/CAM-Based Nanolithography Using a Custom Atomic Force Microscope
,”
IEEE Trans. Autom. Sci. Eng.
,
3
(
3
), pp.
236
239
.
22.
Johannes
,
M. S.
,
Cole
,
D. G.
, and
Clark
,
R. L.
,
2007
, “
Three-Dimensional Design and Replication of Silicon Oxide Nanostructures Using an Atomic Force Microscope
,”
Nanotechnology
,
18
(
34
), p.
345304
.
23.
LibreCAD, 2017, “LibreCAD, Open Source 2D-CAD,” LibreCAD, accessed Aug. 30, 2017, http://www.libreCAD.org
24.
Sourceforge, 2017, “DXF2GCODE: Converting 2D Dxf Drawings to CNC Machine Compatible G-Code,” Sourceforge, accessed Aug. 30, 2017, http://sourceforge.net/projects/dxf2gcode/
25.
Bergström
,
P.
,
Rosendahl
,
S.
, and
Sjödahl
,
M.
,
2011
, “
Shape Verification Aimed for Manufacturing Process Control
,”
Opt. Lasers Eng.
,
49
(
3
), pp.
403
409
.
26.
Yan
,
Y.
,
Zou
,
Q.
, and
Lin
,
Z.
,
2009
, “
A Control Approach to High-Speed Probe-Based Nanofabrication
,”
Nanotechnology
,
20
(
17
), p.
175301
.
You do not currently have access to this content.