Multiscale and multimaterial three-dimensional (3D) printing is new frontier in additive manufacturing (AM). It has shown great potential to implement the simultaneous and full control for fabricated object including external geometry, internal architecture, functional surface, material composition and ratio as well as gradient distribution, feature size ranging from nano-, micro-, to macro-scale, embedded components and electrocircuit, etc. Furthermore, it has the ability to construct the heterogeneous and hierarchical structured object with tailored properties and multiple functionalities which cannot be achieved through the existing technologies. That paves the way and may result in great breakthrough in various applications, e.g., functional tissue and organ, functionally graded (FG) material/structure, wearable devices, soft robot, functionally embedded electronics, metamaterial, multifunctionality product, etc. However, very few of the established AM processes have now the capability to implement the multimaterial and multiscale 3D printing. This paper presented a single nozzle-based multiscale and multimaterial 3D printing process by integrating the electrohydrodynamic jet printing and the active mixing multimaterial nozzle. The proposed AM technology has the capability to create multifunctional heterogeneously structured objects with control of the macroscale external geometry and microscale internal structures as well as functional surface features, particularly, the potential to dynamically mix, grade, and vary the ratios of different materials. An active mixing nozzle, as a core functional component of the 3D printer, is systematically investigated by combining with the theoretical analysis, numerical simulation, and experimental verification. The study aims at exploring a feasible solution to implement the multiscale and multimaterial 3D printing at low cost.

References

References
1.
Derby
,
B.
,
2012
, “
Printing and Prototyping of Tissues and Scaffolds
,”
Science
,
338
(
6109
), pp.
921
926
.
2.
Lewis
,
J. A.
, and
Ahn
,
B. Y.
,
2015
, “
Device Fabrication: Three-Dimensional Printed Electronics
,”
Nature
,
518
(
7537
), pp.
42
43
.
3.
Vaezi
,
M.
,
Chianrabutra
,
S.
,
Mellor
,
B.
, and
Yang
,
S.
,
2013
, “
Multiple Material Additive Manufacturing Part 1: A Review
,”
Virtual Phys. Prototyping
,
8
(
1
), pp.
19
50
.
4.
Kokkinis
,
D.
,
Schaffner
,
M.
, and
Studart
,
A. R.
,
2015
, “
Multimaterial Magnetically Assisted 3D Printing of Composite Materials
,”
Nat. Commun.
,
6
, p.
8643
.
5.
Wegst
,
U. G. K.
,
Bai
,
H.
,
Saiz
,
E.
,
Tomsia
,
A. P.
, and
Ritchie
,
R. O.
,
2014
, “
Bioinspired Structural Materials
,”
Nat. Mater.
,
14
(
1
), pp.
23
36
.
6.
Wehner
,
M.
,
Truby
,
R. L.
,
Fitzgerald
,
D. J.
,
Mosadegh
,
B.
,
Whitesides
,
G. M.
,
Lewis
,
J. A.
, and
Wood
,
R. J.
,
2016
, “
An Integrated Design and Fabrication Strategy for Entirely Soft Autonomous Robots
,”
Nature
,
536
(
7617
), pp.
451
455
.
7.
Oxman
,
N.
,
2011
, “
Variable Property Rapid Prototyping
,”
Virtual Phys. Prototyping
,
6
(
1
), pp.
3
31
.
8.
Bartlett
,
N. W.
,
Tolley
,
M. T.
,
Overvelde
,
J. T. B.
,
Weaver
,
J. C.
,
Mosadegh
,
B.
,
Bertoldi
,
K.
,
Whitesides
,
G. M.
, and
Wood
,
R. J.
,
2015
, “
A 3D-Printed, Functionally Graded Soft Robot Powered by Combustion
,”
Science
,
349
(
6244
), pp.
161
165
.
9.
Park
,
J. U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D. K.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
,
Georgiadis
,
J. G.
,
Ferreira
,
P. M.
, and
Rogers
,
J. A.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.
10.
Rahman
,
T.
,
Renaud
,
L.
,
Heo
,
D.
,
Renn
,
M.
, and
Panat
,
R.
,
2015
, “
Aerosol Based Direct-Write Micro-Additive Fabrication Method for Sub-mm 3D Metal-Dielectric Structures
,”
J. Micromech. Microeng.
,
25
(
10
), p.
107002
.
11.
Burrows
,
L.
,
2015
, “
New Frontiers in 3D Printing
,” Wyss Institute, Boston, MA, accessed July 16, 2017, https://wyss.harvard.edu/new-frontiers-in-3d-printing
12.
Chimate
,
C.
, and
Koc
,
B.
,
2014
, “
Pressure Assisted Multi-Syringe Single Nozzle Deposition System for Manufacturing of Heterogeneous Tissue Scaffolds
,”
Int. J. Adv. Manuf. Technol.
,
75
(
1–4
), pp.
317
330
.
13.
Hohmann
,
J. K.
,
Renner
,
M.
,
Waller
,
E. H.
, and
Freymann
,
G.
,
2015
, “
Three-Dimensional μ-Printing: An Enabling Technology
,”
Adv. Opt. Mater.
,
3
(
11
), pp.
1488
1507
.
14.
Oropallo
,
W.
, and
Piegl
,
L. A.
,
2016
, “
Ten Challenges in 3D Printing
,”
Eng. Comput.
,
32
(
1
), pp.
135
148
.
15.
Hardin
,
J. M.
,
Ober
,
T. J.
,
Valentine
,
A. D.
, and
Lewis
,
J. A.
,
2015
, “
Microfluidic Printheads for Multimaterial 3D Printing of Viscoelastic Inks
,”
Adv. Mater.
,
27
(
21
), pp.
3279
3284
.
16.
Hessel
,
V.
,
Löwe
,
H.
, and
Schönfeld
,
F.
,
2005
, “
Micromixers—A Review on Passive and Active Mixing Principles
,”
Chem. Eng. Sci.
,
60
(
8–9
), pp.
2479
2501
.
17.
Ober
,
T. J.
,
Foresti
,
D.
, and
Lewis
,
J. A.
,
2015
, “
Active Mixing of Complex Fluids at the Microscale
,”
PNAS
,
112
(
40
), pp.
12293
12298
.
18.
Lan
,
H.
,
2016
, “
Apparatus and Method for Multi-Material and Multi-Scale 3D Printing Using Single Nozzle
,” Qingdao Technological University, Qingdao, China, Patent No.
WO 2017071388 A1
.
You do not currently have access to this content.