Surface plasmon polaritons associated with light-nanoparticle interactions can result in dramatic enhancement of electromagnetic fields near and in the gaps between the particles, which can have a large effect on the sintering of these nanoparticles. For example, the plasmonic field enhancement within nanoparticle assemblies is affected by the particle size, spacing, interlayer distance, and light source properties. Computational analysis of plasmonic effects in three-dimensional (3D) nanoparticle packings are presented herein using 532 nm plane wave light. This analysis provides insight into the particle interactions both within and between adjacent layers for multilayer nanoparticle packings. Electric field enhancements up to 400-fold for transverse magnetic (TM) or X-polarized light and 26-fold for transverse electric (TE) or Y-polarized light are observed. It is observed that the thermo-optical properties of the nanoparticle packings change nonlinearly between 0 and 10 nm gap spacing due to the strong and nonlocal near-field interaction between the particles for TM polarized light, but this relationship is linear for TE polarized light. These studies help provide a foundation for understanding micro/nanoscale heating and heat transport for Cu nanoparticle packings under 532 nm light under different polarization for the photonic sintering of nanoparticle assemblies.

References

References
1.
Niittynen
,
J.
,
Sowade
,
E.
,
Kang
,
H.
,
Baumann
,
R. R.
, and
Mäntysalo
,
M.
,
2015
, “
Comparison of Laser and Intense Pulsed Light Sintering (IPL) for Inkjet-Printed Copper Nanoparticle Layers
,”
Sci. Rep.
,
5
, p.
8832
.
2.
Hwang
,
H. J.
,
Oh
,
K. H.
, and
Kim
,
H. S.
,
2016
, “
All-Photonic Drying and Sintering Process Via Flash White Light Combined With Deep-UV and Near-Infrared Irradiation for Highly Conductive Copper Nano-Ink
,”
Sci. Rep.
,
6
, p.
19696
.
3.
Cheng
,
C. W.
, and
Chen
,
J. K.
,
2016
, “
Femtosecond Laser Sintering of Copper Nanoparticles
,”
Appl. Phys. A
,
122
(
4
), p.
289
.
4.
Paeng
,
D.
,
Yeo
,
J.
,
Lee
,
D.
,
Moon
,
S. J.
, and
Grigoropoulos
,
C. P.
,
2015
, “
Laser Wavelength Effect on Laser-Induced Photo-Thermal Sintering of Silver Nanoparticles
,”
Appl. Phys. A
,
120
(
4
), pp.
1229
1240
.
5.
Mubeen
,
S.
,
Zhang
,
S.
,
Kim
,
N.
,
Lee
,
S.
,
Krämer
,
S.
,
Xu
,
H.
, and
Moskovits
,
M.
,
2012
, “
Plasmonic Properties of Gold Nanoparticles Separated From a Gold Mirror by an Ultrathin Oxide
,”
Nano Lett.
,
12
(
4
), pp.
2088
2094
.
6.
Shen
,
S.
,
Narayanaswamy
,
A.
, and
Chen
,
G.
,
2009
, “
Surface Phonon Polaritons Mediated Energy Transfer Between Nanoscale Gaps
,”
Nano Lett.
,
9
(
8
), pp.
2909
2913
.
7.
Klar
,
T.
,
Perner
,
M.
,
Grosse
,
S.
,
Von Plessen
,
G.
,
Spirkl
,
W.
, and
Feldmann
,
J.
,
1998
, “
Surface-Plasmon Resonances in Single Metallic Nanoparticles
,”
Phys. Rev. Lett.
,
80
(
19
), pp.
4249
4252
.
8.
Chen
,
G.
,
2005
,
Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons
,
Oxford University Press
,
Oxford, UK
.
9.
Bugeda Miguel Cervera
,
G.
, and
Lombera
,
G.
,
1999
, “
Numerical Prediction of Temperature and Density Distributions in Selective Laser Sintering Processes
,”
Rapid Prototyping J.
,
5
(
1
), pp.
21
26
.
10.
Dong
,
L.
,
Makradi
,
A.
,
Ahzi
,
S.
, and
Remond
,
Y.
,
2009
, “
Three-Dimensional Transient Finite Element Analysis of the Selective Laser Sintering Process
,”
J. Mater. Process. Technol.
,
209
(
2
), pp.
700
706
.
11.
Kolossov
,
S.
,
Boillat
,
E.
,
Glardon
,
R.
,
Fischer
,
P.
, and
Locher
,
M.
,
2004
, “
3D FE Simulation for Temperature Evolution in the Selective Laser Sintering Process
,”
Int. J. Mach. Tools Manuf.
,
44
(
2
), pp.
117
123
.
12.
Nelson
,
J. C.
,
Xue
,
S.
,
Barlow
,
J. W.
,
Beaman
,
J. J.
,
Marcus
,
H. L.
, and
Bourell
,
D. L.
,
1993
, “
Model of the Selective Laser Sintering of Bisphenol-A Polycarbonate
,”
Ind. Eng. Chem. Res.
,
32
(
10
), pp.
2305
2317
.
13.
Patil
,
R. B.
, and
Yadava
,
V.
,
2007
, “
Finite Element Analysis of Temperature Distribution in Single Metallic Powder Layer During Metal Laser Sintering
,”
Int. J. Mach. Tools Manuf.
,
47
(
7
), pp.
1069
1080
.
14.
Singh
,
A. K.
, and
Srinivasa Prakash
,
R.
,
2010
, “
Response Surface-Based Simulation Modeling for Selective Laser Sintering Process
,”
Rapid Prototyping J.
,
16
(
6
), pp.
441
449
.
15.
Tontowi
,
A. E.
, and
Childs
,
T. H. C.
,
2001
, “
Density Prediction of Crystalline Polymer Sintered Parts at Various Powder Bed Temperatures
,”
Rapid Prototyping J.
,
7
(
3
), pp.
180
184
.
16.
Williams
,
J. D.
, and
Deckard
,
C. R.
,
1998
, “
Advances in Modeling the Effects of Selected Parameters on the SLS Process
,”
Rapid Prototyping J.
,
4
(
2
), pp.
90
100
.
17.
Coquard
,
R.
, and
Baillis
,
D.
,
2004
, “
Radiative Characteristics of Opaque Spherical Particles Beds: A New Method of Prediction
,”
J. Thermophys. Heat Transfer
,
18
(
2
), pp.
178
186
.
18.
Kamiuto
,
K.
,
2005
, “
Correlated Radiative Transfer Through a Packed Bed of Opaque Spheres
,”
Int. Commun. Heat Mass Transfer
,
32
(
1
), pp.
133
139
.
19.
Singh
,
B. P.
, and
Kaviany
,
M.
,
1992
, “
Modelling Radiative Heat Transfer in Packed Beds
,”
Int. J. Heat Mass Transfer
,
35
(
6
), pp.
1397
1405
.
20.
Howell
,
J. R.
, and
Klein
,
D. E.
,
1983
, “
Radiative Heat Transfer Through a Randomly Packed Bed of Spheres by the Monte Carlo Method
,”
ASME J. Heat Transfer
,
105
(
2
), pp.
325
332
.
21.
Zhou
,
J.
,
Zhang
,
Y.
, and
Chen
,
J. K.
,
2009
, “
Numerical Simulation of Laser Irradiation to a Randomly Packed Bimodal Powder Bed
,”
Int. J. Heat Mass Transfer
,
52
(
13
), pp.
3137
3146
.
22.
Feng
,
Y. T.
,
Han
,
K.
,
Li
,
C. F.
, and
Owen
,
D. R. J.
,
2008
, “
Discrete Thermal Element Modelling of Heat Conduction in Particle Systems: Basic Formulations
,”
J. Comput. Phys.
,
227
(
10
), pp.
5072
5089
.
23.
Tsory
,
T.
,
Ben-Jacob
,
N.
,
Brosh
,
T.
, and
Levy
,
A.
,
2013
, “
Thermal DEM–CFD Modeling and Simulation of Heat Transfer Through Packed Bed
,”
Powder Technol.
,
244
, pp.
52
60
.
24.
Widenfeld
,
G.
,
Weiss
,
Y.
, and
Kalman
,
H.
,
2003
, “
The Effect of Compression and Preconsolidation on the Effective Thermal Conductivity of Particulate Beds
,”
Powder Technol.
,
133
(
1
), pp.
15
22
.
25.
Zhang
,
H. W.
,
Zhou
,
Q.
,
Xing
,
H. L.
, and
Muhlhaus
,
H.
,
2011
, “
A DEM Study on the Effective Thermal Conductivity of Granular Assemblies
,”
Powder Technol.
,
205
(
1
), pp.
172
183
.
26.
Bosbach
,
J.
,
Martin
,
D.
,
Stietz
,
F.
,
Wenzel
,
T.
, and
Träger
,
F.
,
1999
, “
Laser-Based Method for Fabricating Monodisperse Metallic Nanoparticles
,”
Appl. Phys. Lett.
,
74
(
18
), pp.
2605
2607
.
27.
Kuznetsov
,
A. I.
,
Kiyan
,
R.
, and
Chichkov
,
B. N.
,
2010
, “
Laser Fabrication of 2D and 3D Metal Nanoparticle Structures and Arrays
,”
Opt. Express
,
18
(
20
), pp.
21198
21203
.
28.
Yuksel
,
A.
, and
Cullinan
,
M.
,
2016
, “
Modeling of Nanoparticle Agglomeration and Powder Bed Formation in Microscale Selective Laser Sintering Systems
,”
Addit. Manuf.
,
12
(Part B), pp.
204
215
.
29.
Li
,
L.
,
Hong
,
M.
,
Schmidt
,
M.
,
Zhong
,
M.
,
Malshe
,
A.
,
Huis
,
B.
, and
Kovalenko
,
V.
,
2011
, “
Laser Nano-Manufacturing–State of the Art and Challenges
,”
CIRP Annals-Manuf. Technol.
,
60
(
2
), pp.
735
755
.
30.
Sosa
,
I. O.
,
Noguez
,
C.
, and
Barrera
,
R. G.
,
2003
, “
Optical Properties of Metal Nanoparticles With Arbitrary Shapes
,”
J. Phys. Chem. B
,
107
(
26
), pp.
6269
6275
.
31.
Evlyukhin
,
A. B.
,
Brucoli
,
G.
,
Martín-Moreno
,
L.
,
Bozhevolnyi
,
S. I.
, and
García-Vidal
,
F. J.
,
2007
, “
Surface Plasmon Polariton Scattering by Finite-Size Nanoparticles
,”
Phys. Rev. B
,
76
(
7
), p.
075426
.
32.
Johnson
,
P. B.
, and
Christy
,
R. W.
,
1972
, “
Optical Constants of the Noble Metals
,”
Phys. Rev. B
,
6
(
12
), pp.
4370
4379
.
33.
Hutter
,
T.
,
Elliott
,
S. R.
, and
Mahajan
,
S.
,
2012
, “
Interaction of Metallic Nanoparticles With Dielectric Substrates: Effect of Optical Constants
,”
Nanotechnology
,
24
(
3
), p.
035201
.
34.
Maier
,
S. A.
,
Kik
,
P. G.
, and
Atwater
,
H. A.
,
2003
, “
Optical Pulse Propagation in Metal Nanoparticle Chain Waveguides
,”
Phys. Rev. B
,
67
(
20
), p.
205402
.
35.
Sweatlock
,
L. A.
,
Maier
,
S. A.
,
Atwater
,
H. A.
,
Penninkhof
,
J. J.
, and
Polman
,
A.
,
2005
, “
Highly Confined Electromagnetic Fields in Arrays of Strongly Coupled Ag Nanoparticles
,”
Phys. Rev. B
,
71
(
23
), p.
235408
.
36.
Wang
,
Y.
,
Duan
,
C.
,
Peng
,
L.
, and
Liao
,
J.
,
2014
, “
Dimensionality-Dependent Charge Transport in Close-Packed Nanoparticle Arrays: From 2D to 3D
,”
Sci. Rep.
,
4
, p.
7565
.
37.
Nicolas
,
R.
,
Lévêque
,
G.
,
Marae-Djouda
,
J.
,
Montay
,
G.
,
Madi
,
Y.
,
Plain
,
J.
, and
Maurer
,
T.
,
2015
, “
Plasmonic Mode Interferences and Fano Resonances in Metal-Insulator-Metal Nanostructured Interface
,”
Sci. Rep.
,
5
(
1
), p.
14419
.
38.
Zenou
,
M.
,
Ermak
,
O.
,
Saar
,
A.
, and
Kotler
,
Z.
,
2013
, “
Laser Sintering of Copper Nanoparticles
,”
J. Phys. D Appl. Phys.
,
47
(
2
), p.
025501
.
39.
Roy
,
N. K.
,
Yuksel
,
A.
, and
Cullinan
,
M. A.
,
2015
, “
μ-SLS of Metals: Physical and Thermal Characterization of Cu-Nanopowders
,”
Solid Freeform Fabrication Conference
(
SFF
), Austin, TX, Aug. 7–9, pp.
772
788
.
You do not currently have access to this content.