Three-dimensional (3D) printing of microscale structures with high-resolution (submicron) and low-cost is still a challenging work for the existing 3D printing techniques. Here, we report a direct writing process via near-field melt electrospinning (NFME) to achieve microscale printing of single filament wall structures. The process allows continuous direct writing due to the linear and stable jet trajectory in the electric near field. The layer-by-layer stacking of fibers, or self-assembly effect, is attributed to the attraction force from the molten deposited fibers and accumulated negative charges. We demonstrated successful printing of various 3D thin-wall structures with a minimal wall thickness less than 5 μm. By optimizing the process parameters of NFME, ultrafine poly (ε-caprolactone) (PCL) fibers have been stably generated and precisely stacked and fused into 3D thin-wall structures with an aspect ratio of more than 60. It is envisioned that the NFME can be transformed into a viable high-resolution and low-cost microscale 3D printing technology.

References

References
1.
Garlapati
,
S. K.
,
Baby
,
T. T.
,
Dehm
,
S.
,
Hammad
,
M.
,
Chakravadhanula
,
V. S. K.
,
Kruk
,
R.
,
Hahn
,
H.
, and
Dasgupta
,
S.
,
2015
, “
Ink‐Jet Printed CMOS Electronics From Oxide Semiconductors
,”
Small
,
11
(
29
), pp.
3591
3596
.
2.
Rutz
,
A. L.
,
Hyland
,
K. E.
,
Jakus
,
A. E.
,
Burghardt
,
W. R.
, and
Shah
,
R. N.
,
2015
, “
A Multimaterial Bioink Method for 3D Printing Tunable, Cell‐Compatible Hydrogels
,”
Adv. Mater.
,
27
(
9
), pp.
1607
1614
.
3.
Sun
,
K.
,
Wei
,
T. S.
,
Ahn
,
B. Y.
,
Seo
,
J. Y.
,
Dillon
,
S. J.
, and
Lewis
,
J. A.
,
2013
, “
3D Printing of Interdigitated Li‐Ion Microbattery Architectures
,”
Adv. Mater.
,
25
(
33
), pp.
4539
4543
.
4.
Li
,
W. J.
,
Laurencin
,
C. T.
,
Caterson
,
E. J.
,
Tuan
,
R. S.
, and
Ko
,
F. K.
,
2002
, “
Electrospun Nanofibrous Structure: A Novel Scaffold for Tissue Engineering
,”
J. Biomed. Mater. Res.
,
60
(
4
), pp.
613
621
.
5.
Williams
,
J. M.
,
Adewunmi
,
A.
,
Schek
,
R. M.
,
Flanagan
,
C. L.
,
Krebsbach
,
P. H.
,
Feinberg
,
S. E.
,
Hollister
,
S. J.
, and
Das
,
S.
,
2005
, “
Bone Tissue Engineering Using Polycaprolactone Scaffolds Fabricated Via Selective Laser Sintering
,”
Biomaterials
,
26
(
23
), pp.
4817
4827
.
6.
Jansen
,
J.
,
Melchels
,
F. P.
,
Grijpma
,
D. W.
, and
Feijen
,
J.
,
2008
, “
Fumaric Acid Monoethyl Ester-Functionalized Poly (D, L-Lactide)/N-Vinyl-2-Pyrrolidone Resins for the Preparation of Tissue Engineering Scaffolds by Stereolithography
,”
Biomacromolecules
,
10
(
2
), pp.
214
220
.
7.
Hutmacher
,
D. W.
,
Schantz
,
T.
,
Zein
,
I.
,
Ng
,
K. W.
,
Teoh
,
S. H.
, and
Tan
,
K. C.
,
2001
, “
Mechanical Properties and Cell Cultural Response of Polycaprolactone Scaffolds Designed and Fabricated Via Fused Deposition Modeling
,”
J. Biomed. Mater. Res., Part A
,
55
(
2
), pp.
203
216
.
8.
Ko
,
S. H.
,
Chung
,
J.
,
Hotz
,
N.
,
Nam
,
K. H.
, and
Grigoropoulos
,
C. P.
,
2010
, “
Metal Nanoparticle Direct Inkjet Printing for Low-Temperature 3D Micro Metal Structure Fabrication
,”
J. Micromech. Microeng.
,
20
(
12
), p.
125010
.
9.
Strano
,
G.
,
Hao
,
L.
,
Everson
,
R. M.
, and
Evans
,
K. E.
,
2013
, “
Surface Roughness Analysis, Modelling and Prediction in Selective Laser Melting
,”
J. Mater. Process. Technol.
,
213
(
4
), pp.
589
597
.
10.
Muller
,
P.
,
Mognol
,
P.
, and
Hascoet
,
J.-Y.
,
2013
, “
Modeling and Control of a Direct Laser Powder Deposition Process for Functionally Graded Materials (FGM) Parts Manufacturing
,”
J. Mater. Process. Technol.
,
213
(
5
), pp.
685
692
.
11.
Dalton
,
P. D.
,
Vaquette
,
C.
,
Farrugia
,
B. L.
,
Dargaville
,
T. R.
,
Brown
,
T. D.
, and
Hutmacher
,
D. W.
,
2013
, “
Electrospinning and Additive Manufacturing: Converging Technologies
,”
Biomater. Sci.
,
1
(
2
), pp.
171
185
.
12.
Lee
,
M.
, and
Kim
,
H.-Y.
,
2014
, “
Toward Nanoscale Three-Dimensional Printing: Nanowalls Built of Electrospun Nanofibers
,”
Langmuir
,
30
(
5
), pp.
1210
1214
.
13.
He
,
J.
,
Xu
,
F.
,
Cao
,
Y.
,
Liu
,
Y.
, and
Li
,
D.
,
2016
, “
Towards Microscale Electrohydrodynamic Three-Dimensional Printing
,”
J. Phys. D: Appl. Phys.
,
49
(
5
), p.
055504
.
14.
Brown
,
T. D.
,
Dalton
,
P. D.
, and
Hutmacher
,
D. W.
,
2011
, “
Direct Writing by Way of Melt Electrospinning
,”
Adv. Mater.
,
23
(
47
), pp.
5651
5657
.
15.
Hochleitner
,
G.
,
Jüngst
,
T.
,
Brown
,
T. D.
,
Hahn
,
K.
,
Moseke
,
C.
,
Jakob
,
F.
,
Dalton
,
P. D.
, and
Groll
,
J.
,
2015
, “
Additive Manufacturing of Scaffolds With Sub-Micron Filaments Via Melt Electrospinning Writing
,”
Biofabrication
,
7
(
3
), p.
035002
.
16.
Dasdemir
,
M.
,
Topalbekiroglu
,
M.
, and
Demir
,
A.
,
2013
, “
Electrospinning of Thermoplastic Polyurethane Microfibers and Nanofibers From Polymer Solution and Melt
,”
J. Appl. Polym. Sci.
,
127
(
3
), pp.
1901
1908
.
17.
Deng
,
R.
,
Liu
,
Y.
,
Ding
,
Y.
,
Xie
,
P.
,
Luo
,
L.
, and
Yang
,
W.
,
2009
, “
Melt Electrospinning of Low‐Density Polyethylene Having a Low‐Melt Flow Index
,”
J. Appl. Polym. Sci.
,
114
(
1
), pp.
166
175
.
18.
Collins
,
G.
,
Federici
,
J.
,
Imura
,
Y.
, and
Catalani
,
L. H.
,
2012
, “
Charge Generation, Charge Transport, and Residual Charge in the Electrospinning of Polymers: A Review of Issues and Complications
,”
J. Appl. Phys.
,
111
(
4
), p.
044701
.
You do not currently have access to this content.