The manufacture of micro–nano structures in transparent dielectrics is becoming increasingly important due to the applications in medical and biological sciences. The femtosecond pulsed laser, with its selectivity, high precision, and three-dimensional direct writing nature, is an ideal tool for this processing technology. In this paper, an improved model for the prediction of ablation crater shape and fluence threshold in femtosecond laser processing of fused silica is presented, in which self-trapping excitons and electrons' relaxation are involved to depict ionization process, Thornber's and Keldysh's models are employed to estimate ionization rate precisely, and a novel ablation criterion is proposed to judge ablation. Moreover, the relationship between the ablation fluence threshold and laser pulse duration is investigated with three different extrapolation methods. The results indicate that no matter which extrapolation method is employed, the ablation fluence thresholds predicted by the presented model agree with the published data.

References

References
1.
Grover
,
W. H.
, and
Mathies
,
R. A.
,
2005
, “
An Integrated Microfluidic Processor for Single Nucleotide Polymorphism-Based DNA Computing
,”
Lab Chip
,
5
(
10
), pp.
1033
1040
.
2.
Sugioka
,
K.
,
Hanada
,
Y.
, and
Midorikawa
,
K.
,
2010
, “
Three-Dimensional Femtosecond Laser Micromachining of Photosensitive Glass for Biomicrochips
,”
Laser Photonics Rev.
,
4
(
3
), pp.
386
400
.
3.
Schaffer
,
C. B.
,
Brodeur
,
A.
,
García
,
J. F.
, and
Mazur
,
E.
,
2001
, “
Micromachining Bulk Glass by Use of Femtosecond Laser Pulses With Nanojoule Energy
,”
Opt. Lett.
,
26
(
2
), pp.
93
95
.
4.
Kamata
,
M.
, and
Obara
,
M.
,
2004
, “
Control of the Refractive Index Change in Fused Silica Glasses Induced by a Loosely Focused Femtosecond Laser
,”
Appl. Phys. A
,
78
(
1
), pp.
85
88
.
5.
Li
,
Y.
, and
Qu
,
S.
,
2013
, “
Water-Assisted Femtosecond Laser Ablation for Fabricating Three-Dimensional Microfluidic Chips
,”
Curr. Appl. Phys.
,
13
(
7
), pp.
1292
1295
.
6.
Stuart
,
B. C.
,
Feit
,
M. D.
,
Herman
,
S.
,
Rubenchik
,
A. M.
,
Shore
,
B. W.
, and
Perry
,
M. D.
,
1996
, “
Nanosecond-to-Femtosecond Laser-Induced Breakdown in Dielectrics
,”
Phys. Rev. B
,
53
(
4
), pp.
1749
1761
.
7.
Balling
,
P.
, and
Schou
,
J.
,
2013
, “
Femtosecond-Laser Ablation Dynamics of Dielectrics: Basics and Applications for Thin Films
,”
Rep. Prog. Phys.
,
76
(
3
), p.
036502
.
8.
Li
,
M.
,
Menon
,
S.
,
Nibarger
,
J. P.
, and
Gibson
,
G. N.
,
1999
, “
Ultrafast Electron Dynamics in Femtosecond Optical Breakdown of Dielectrics
,”
Phys. Rev. Lett.
,
82
(
11
), pp.
2394
2397
.
9.
Chimier
,
B.
,
Utéza
,
O.
,
Sanner
,
N.
,
Sentis
,
M.
,
Itina
,
T.
,
Lassonde
,
P.
,
Légaré
,
F.
,
Vidal
,
F.
, and
Kieffer
,
J. C.
,
2011
, “
Damage and Ablation Thresholds of Fused-Silica in Femtosecond Regime
,”
Phys. Rev. B
,
84
(
9
), p.
094104
.
10.
Mao
,
S. S.
,
Quéré
,
F.
,
Guizard
,
S.
,
Mao
,
X.
,
Russo
,
R. E.
,
Petite
,
G.
, and
Martin
,
P.
,
2004
, “
Dynamics of Femtosecond Laser Interactions With Dielectrics
,”
Appl. Phys. A
,
79
(
7
), pp.
1695
1709
.
11.
Jiang
,
L.
, and
Tsai
,
H. L.
,
2005
, “
Modeling the Femtosecond Laser Pulse-Train Ablation of Dielectrics
,”
ASME
Paper No. IMECE2005-81774.
12.
Jiang
,
L.
, and
Tsai
,
H. L.
,
2008
, “
A Plasma Model Combined With an Improved Two-Temperature Equation for Ultrafast Laser Ablation of Dielectrics
,”
J. Appl. Phys.
,
104
(
9
), p.
093101
.
13.
Audebert
,
P.
,
Daguzan
,
Ph.
,
Dos Santos
,
A.
,
Gauthier
,
J. C.
,
Geindre
,
J. P.
,
Guizard
,
S.
,
Hamoniaux
,
G.
,
Krastev
,
K.
,
Martin
,
P.
,
Petite
,
G.
, and
Antonetti
,
A.
,
1994
, “
Space-Time Observation of an Electron Gas in SiO2
,”
Phys. Rev. Lett.
,
73
(
14
), pp.
1990
1993
.
14.
Tien
,
A. C.
,
Backus
,
S.
,
Kapteyn
,
H.
,
Murnane
,
M.
, and
Mourou
,
G.
,
1999
, “
Short-Pulse Laser Damage in Transparent Materials as a Function of Pulse Duration
,”
Phys. Rev. Lett.
,
82
(
19
), pp.
3883
3886
.
15.
Du
,
D.
,
Liu
,
X.
,
Korn
,
G.
,
Squier
,
J.
, and
Mourou
,
G.
,
1994
, “
Laser-Induced Breakdown by Impact Ionization in SiO2 With Pulse Widths From 7 ns to 150 fs
,”
Appl. Phys. Lett.
,
64
(
23
), pp.
3071
3073
.
16.
Petrov
,
G. M.
, and
Davis
,
J.
,
2008
, “
Interaction of Intense Ultra-Short Laser Pulses With Dielectrics
,”
J. Phys. B: At. Mol. Opt. Phys.
,
41
(
2
), p.
025601
.
17.
Song
,
K. S.
, and
Williams
,
R. T.
,
2013
,
Self-Trapped Excitons
,
Springer Science and Business Media
,
Berlin
.
18.
Grojo
,
D.
,
Gertsvolf
,
M.
,
Lei
,
S.
,
Barillot
,
T.
,
Rayner
,
D. M.
, and
Corkum
,
P. B.
,
2010
, “
Exciton-Seeded Multiphoton Ionization in Bulk SiO2
,”
Phys. Rev. B
,
81
(
21
), p.
212301
.
19.
Tanimura
,
K.
,
Tanaka
,
T.
, and
Itoh
,
N.
,
1983
, “
Creation of Quasistable Lattice Defects by Electronic Excitation in SiO2
,”
Phys. Rev. Lett.
,
51
(
5
), pp.
423
426
.
20.
Guizard
,
S.
,
Semerok
,
A.
,
Gaudin
,
J.
,
Hashida
,
M.
,
Martin
,
P.
, and
Quéré
,
F.
,
2002
, “
Femtosecond Laser Ablation of Transparent Dielectrics: Measurement and Modelisation of Crater Profiles
,”
Appl. Surf. Sci.
,
186
(
1
), pp.
364
368
.
21.
Sudrie
,
L.
,
Couairon
,
A.
,
Franco
,
M.
,
Lamouroux
,
B.
,
Prade
,
B.
,
Tzortzakis
,
S.
, and
Mysyrowicz
,
A.
,
2002
, “
Femtosecond Laser-Induced Damage and Filamentary Propagation in Fused Silica
,”
Phys. Rev. Lett.
,
89
(
18
), p.
186601
.
22.
Kruer
,
W. L.
,
1988
,
The Physics of Laser Plasma Interactions
,
Addison-Wesley
,
Boston, MA
.
23.
Bulgakova
,
N. M.
,
Stoian
,
R.
,
Rosenfeld
,
A.
,
Hertel
,
I. V.
,
Marine
,
W.
, and
Campbell
,
E. E. B.
,
2005
, “
A General Continuum Approach to Describe Fast Electronic Transport in Pulsed Laser Irradiated Materials: The Problem of Coulomb Explosion
,”
Appl. Phys. A
,
81
(
2
), pp.
345
356
.
24.
Lenzner
,
M.
,
Krüger
,
J.
,
Sartania
,
S.
,
Cheng
,
Z.
,
Spielmann
,
Ch.
,
Mourou
,
G.
,
Kautek
,
W.
, and
Krausz
,
F.
,
1998
, “
Femtosecond Optical Breakdown in Dielectrics
,”
Phys. Rev. Lett.
,
80
(
18
), pp.
4076
4079
.
25.
Liu
,
J. M.
,
1982
, “
Simple Technique for Measurements of Pulsed Gaussian-Beam Spot Sizes
,”
Opt. Lett.
,
7
(
5
), pp.
196
198
.
26.
Puerto
,
D.
,
Siegel
,
J.
,
Gawelda
,
W.
,
Galvan-Sosa
,
M.
,
Ehrentraut
,
L.
,
Bonse
,
J.
, and
Solis
,
J.
,
2010
, “
Dynamics of Plasma Formation, Relaxation, and Topography Modification Induced by Femtosecond Laser Pulses in Crystalline and Amorphous Dielectrics
,”
JOSA B
,
27
(
5
), pp.
1065
1076
.
You do not currently have access to this content.