With new fabrication methods for mass production of nanotextured samples, there is an increasing demand for new characterization methods. Conventional microscopes are either too slow and/or too sensitive to vibrations. Scatterometry is a good candidate for in-line measuring in an industrial environment as it is insensitive to vibrations and very fast. However, as common scatterometry techniques are nonimaging, it can be challenging for the operator to find the area of interest on a sample and to detect defects. We have therefore developed the technique imaging scatterometry, in which the user first has to select the area of interest after the data have been acquired. In addition, one is no longer limited to analyze areas equal to the spot size, and areas down to 3 μm × 3 μm can be analyzed. The special method Fourier lens scatterometry is capable of performing measurements on misaligned samples and is therefore suitable in a production line. We demonstrate characterization of one-dimensional and two-dimensional gratings from a single measurement using a Fourier lens scatterometer. In this paper, we present a comparison between spectroscopic scatterometry, the newly developed imaging scatterometry, and some state-of-the-art conventional characterization techniques, atomic force microscopy and confocal microscopy.

References

References
1.
Saito
,
A.
,
2011
, “
Material Design and Structural Color Inspired by Biomimetic Approach
,”
Sci. Technol. Adv. Mater.
,
12
(
6
), p. 064709.
2.
Kinoshita
,
S.
,
Yoshioka
,
S.
, and
Miyazaki
,
J.
,
2008
, “
Physics of Structural Colors
,”
Rep. Prog. Phys.
,
71
(
7
), p. 076401.
3.
Fudouzi
,
H.
,
2011
, “
Tunable Structural Color in Organisms and Photonic Materials for Design of Bioinspired Materials
,”
Sci. Technol. Adv. Mater.
,
12
(
6
), p. 064704.
4.
Kumar
,
K.
,
Duan
,
H.
,
Hegde
,
R. S.
,
Koh
,
S. C. W.
,
Wei
,
J. N.
, and
Yang
,
J. K. W.
,
2012
, “
Printing Colour at the Optical Diffraction Limit
,”
Nat. Nanotechnol.
,
7
(
9
), pp.
557
561
.
5.
Cheng
,
F.
,
Gao
,
J.
,
Luk
,
T. S.
, and
Yang
,
X.
,
2015
, “
Structural Color Printing Based on Plasmonic Metasurfaces of Perfect Light Absorption
,”
Sci. Rep.
,
5
(
1
), p.
11045
.
6.
Guo
,
Z.
, and
Liu
,
W.
,
2007
, “
Biomimic From the Superhydrophobic Plant Leaves in Nature: Binary Structure and Unitary Structure
,”
Plant Sci.
,
172
(
6
), pp.
1103
1112
.
7.
Koch
,
K.
, and
Barthlott
,
W.
,
2009
, “
Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials
,”
Philos. Trans. R. Soc. A
,
367
(
1893
), pp.
1487
1509
.
8.
Zalkovskij
,
M.
,
Thamdrup
,
L. H.
,
Smistrup
,
K.
,
Andén
,
T.
,
Johansson
,
A. C.
,
Mikkelsen
,
N. J.
,
Madsen
,
M. H.
,
Garnæs
,
J.
,
Kristiansen
,
T. T.
,
Diemer
,
M.
,
Døssing
,
M.
,
Minzari
,
D.
,
Tang
,
P. T.
,
Kristensen
,
A.
,
Taboryski
,
R.
,
Essendrop
,
S.
,
Nielsen
,
T.
, and
Bilenberg
,
B.
,
2015
, “
Smart Plastic Functionalization by Nanoimprint and Injection Molding
,”
Proc. SPIE
,
9423
, p. 94230T.
9.
Calaon
,
M.
,
Madsen
,
M. H.
,
Weirich
,
J.
,
Hansen
,
H. N.
,
Tosello
,
G.
,
Hansen
,
P. E.
,
Garnaes
,
J.
, and
Tang
,
P. T.
,
2015
, “
Replication Fidelity Assessment of Large Area Sub-μm Structured Polymer Surfaces Using Scatterometry
,”
Surf. Topogr. Metrol. Prop.
,
3
(
4
), p. 045005.
10.
Slotwinski
,
J. A.
, and
Garboczi
,
E. J.
,
2015
, “
Metrology Needs for Metal Additive Manufacturing Powders
,”
JOM
,
67
(
3
), pp.
538
543
.
11.
Madsen
,
M. H.
, and
Hansen
,
P.-E.
,
2016
, “
Scatterometry—Fast and Robust Measurements of Nano-Textured Surfaces
,”
Surf. Topogr. Metrol. Prop.
,
4
(
2
), p.
023003
.
12.
Petrik
,
P.
,
Kumar
,
N.
,
Juhasz
,
G.
,
Major
,
C.
,
Fodor
,
B.
,
Agocs
,
E.
,
Lohner
,
T.
,
Pereira
,
S. F.
,
Urbach
,
H. P.
, and
Fried
,
M.
,
2014
, “
Optical Characterization of Macro-, Micro- and Nanostructures Using Polarized Light
,”
J. Phys. Conf. Ser.
,
558
(
1
), p.
012008
.
13.
Raymond
,
C.
,
2005
, “
Overview of Scatterometry Applications in High Volume Silicon Manufacturing
,”
AIP Conf. Proc.
,
788
(1), pp.
394
402
.
14.
Seiler
,
D. G.
,
National Institute of Standards and Technology (U.S.)
, eds.,
2003
, “
Characterization and Metrology for ULSI Technology
,”
International Conference on Characterization and Metrology for ULSI Technology
, Austin, TX, Mar. 24–28, pp. 381–388.
15.
Koops
,
R.
,
Sonin
,
P.
,
van Veghel
,
M.
, and
El Gawhary
,
O.
,
2014
, “
A Compact New-Concept Ellipsometer for Accurate Large Scale Thin Film Measurements
,”
J. Opt.
,
16
(
6
), p. 065701.
16.
Raymond
,
C. J.
,
1995
, “
Metrology of Subwavelength Photoresist Gratings Using Optical Scatterometry
,”
J. Vac. Sci. Technol. B Microelectron. Nanometer Struct.
,
13
(
4
), p.
1484
.
17.
Madsen
,
M. H.
,
Boher
,
P.
,
Hansen
,
P.-E.
, and
Jørgensen
,
J. F.
,
2016
, “
Alignment-Free Characterization of 2D Gratings
,”
Appl. Opt.
,
55
(
2
), pp.
317
322
.
18.
Madsen
,
M. H.
, and
Hansen
,
P.-E.
,
2016
, “
Imaging Scatterometry for Flexible Measurements of Patterned Areas
,”
Opt. Express
,
24
(
2
), pp.
1109
1117
.
19.
Leach
,
R. K.
,
2014
,
Fundamental Principles of Engineering Nanometrology
,
2nd ed.
, William Andrew ed.,
Elsevier
,
Amsterdam, The Netherlands
.
20.
InfoScat
,
2015
, “Robust Measurement of Nano-Structures in Milli-Seconds!,” InfoScat, Hørsholm, Denmark, accessed Dec. 14, 2016, http://www.infoscat.com/
21.
Madsen
,
M. H.
,
Hansen
,
P.-E.
,
Zalkovskij
,
M.
,
Karamehmedović
,
M.
, and
Garnæs
,
J.
,
2015
, “
Fast Characterization of Moving Samples With Nano-Textured Surfaces
,”
Optica
,
2
(
4
), pp.
301
306
.
22.
Leroux
,
T.
,
1993
, “
Fast Contrast vs. Viewing Angle Measurements for LCDs
,”
13th International Display Research Conference
, Eurodisplay 93, Strasbourg, France, Aug. 31–Sept. 3, pp. 447–449.
23.
Roy
,
S.
,
Kumar
,
N.
,
Pereira
,
S. F.
, and
Urbach
,
H. P.
,
2013
, “
Interferometric Coherent Fourier Scatterometry: A Method for Obtaining High Sensitivity in the Optical Inverse-Grating Problem
,”
J. Opt.
,
15
(
7
), p.
075707
.
24.
Paz
,
V.
,
Peterhänsel
,
S.
,
Frenner
,
K.
,
Osten
,
W.
,
Ovsianikov
,
A.
,
Obata
,
K.
, and
Chichkov
,
B.
,
2011
, “
Depth Sensitive Fourier-Scatterometry for the Characterization of Sub-100 nm Periodic Structures
,”
Proc. SPIE
,
8083
, p. 80830M.
25.
El Gawhary
,
O.
,
Kumar
,
N.
,
Pereira
,
S. F.
,
Coene
,
W. M. J.
, and
Urbach
,
H. P.
,
2011
, “
Performance Analysis of Coherent Optical Scatterometry
,”
Appl. Phys. B
,
105
(
4
), pp.
775
781
.
26.
Stover
,
J. C.
,
1995
, “
Society of Photo-Optical Instrumentation Engineers
,”
Optical Scattering: Measurement and Analysis
,
SPIE Optical Engineering Press
,
Bellingham, WA
.
27.
Als-Nielsen
,
J.
, and
McMorrow
,
D.
,
2011
,
Elements of Modern X-Ray Physics
,
2nd ed.
,
Wiley
,
Hoboken, NJ
.
28.
Williams
,
D. B.
, and
Carter
,
C. B.
,
2009
,
Transmission Electron Microscopy
,
Springer
,
Boston, MA
.
29.
Garnaes
,
J.
,
Kofod
,
N.
,
Kühle
,
A.
,
Nielsen
,
C.
,
Dirscherl
,
K.
, and
Blunt
,
L.
,
2003
, “
Calibration of Step Heights and Roughness Measurements With Atomic Force Microscopes
,”
Precis. Eng.
,
27
(
1
), pp.
91
98
.
30.
Agocs
,
E.
,
Bodermann
,
B.
,
Burger
,
S.
,
Dai
,
G.
,
Endres
,
J.
,
Hansen
,
P.-E.
,
Nielson
,
L.
,
Madsen
,
M. H.
,
Heidenreich
,
S.
,
Krumrey
,
M.
,
Loechel
,
B.
,
Probst
,
J.
,
Scholze
,
F.
,
Soltwisch
,
V.
, and
Wurm
,
M.
,
2015
, “
Scatterometry Reference Standards to Improve Tool Matching and Traceability in Lithographical Nanomanufacturing
,”
Proc. SPIE
,
9556
, p. 955610.
31.
Abbe
,
E.
,
1873
, “
Beiträge zur Theorie des Mikroskops und der Mikroskopischen Wahrnehmung
,”
Arch. Für Mikrosk. Anat.
,
9
(
1
), pp.
413
418
.
32.
Luebbers
,
R.
,
1984
, “
Finite Conductivity Uniform GTD Versus Knife Edge Diffraction in Prediction of Propagation Path Loss
,”
IEEE Trans. Antennas Propag.
,
32
(
1
), pp.
70
76
.
33.
Garnaes
,
J.
,
Hansen
,
P.-E.
,
Agersnap
,
N.
,
Holm
,
J.
,
Borsetto
,
F.
, and
Kühle
,
A.
,
2006
, “
Profiles of a High-Aspect-Ratio Grating Determined by Spectroscopic Scatterometry and Atomic-Force Microscopy
,”
Appl. Opt.
,
45
(
14
), pp.
3201
3212
.
You do not currently have access to this content.