This paper presents smart tooling concepts applied to ultraprecision machining, particularly through the development of smart tool holders, two types of smart cutting tools, and a smart spindle for high-speed drilling and precision turning purposes, respectively. The smart cutting tools presented are force-based devices, which allow measuring the cutting force in real-time. By monitoring the cutting force, a suitable sensor feedback signal can be captured, which can then be applied for the smart machining. Furthermore, an overview of recent research projects on smart spindle development is provided, demonstrating that signal feedback is very closely correlated to the drilling through a multilayer composite board. Implementation aspects on the proposed smart cutting tool are also explored in the application of hybrid dissimilar material machining.

References

References
1.
Tlusty
,
J.
, and
Andrews
,
G.
,
1983
, “
A Critical Review of Sensors for Unmanned Machining
,”
Ann. CIRP
,
32
(2), pp.
563
572
.
2.
Weck
,
M.
,
1983
, “
Machine Diagnostics in Automated Production
,”
J. Manuf. Syst.
,
2
(
2
), pp.
101
106
.
3.
Cheng
,
K.
, and
Huo
,
D. H.
,
2013
,
Micro Cutting: Fundamentals and Applications
,
Wiley
,
Chichester, UK
, Chap. 1.
4.
Feng
,
P. F.
,
Yu
,
D. W.
,
Wu
,
Z. J.
, and
Uhlmann
,
E.
,
2008
, “
Jaw-Chuck Stiffness and Its Influence on Dynamic Clamping Force During High-Speed Turning
,”
Int. J. Mach. Tools Manuf.
,
48
(
11
), pp.
1268
1275
.
5.
Shin
,
W. C.
,
Ro
,
S. K.
,
Park
,
H. W.
, and
Park
,
J. K.
,
2009
, “
Development of a Micro/Meso-Tool Clamp Using a Shape Memory Alloy for Application in Micro-Spindle Units
,”
Int. J. Mach. Tools Manuf.
,
49
(7–8), pp.
579
585
.
6.
Westwind Air Bearing
,
2007
, “
Air Bearing Technology
,” Westwind Air Bearings, Poole, Dorset, UK, accessed Feb. 18,
2016
, http://westwind-airbearings.com/graphics/pcb/D1722%20160K.pdf
7.
Stein
,
J. L.
, and
Huh
,
K.
,
2002
, “
Monitoring Cutting Forces in Turning: A Model: Base Approach
,”
ASME J. Manuf. Sci. Eng.
,
124
(
1
), pp.
26
31
.
8.
Alfred
,
P.
,
2000
, “
A Review of Wireless SAW Sensors
,”
IEEE Trans. Ultrason. Ferroelectr. Freq. Control
,
47
(
2
), pp.
317
322
.
9.
Donohoe
,
B.
,
Geraghty
,
D.
, and
O'Donnell
,
G. E.
,
2011
, “
Wireless Calibration of a Surface Acoustic Wave Resonator as a Strain Sensor
,”
IEEE Trans. Sens. J.
,
11
(
4
), pp.
1026
1032
.
10.
Bhandari
,
B.
,
Hong
,
Y. S.
,
Yoon
,
H. S.
,
Moon
,
J. S.
,
Pham
,
M. Q.
,
Lee
,
G. B.
,
Huang
,
Y. C.
,
Linke
,
B. S.
,
Dornfeld
,
D. A.
, and
Ahn
,
S. H.
,
2013
, “
Development of a Micro-Drilling Burr-Control Chart for PCB Drilling
,”
Precis. Eng.
,
38
(
1
), pp.
221
229
.
11.
Abele
,
E.
,
Altintas
,
Y.
, and
Brecher
,
C.
,
2010
, “
Machine Tool Spindle Units
,”
Ann. CIRP
,
59
(
2
), pp.
781
802
.
12.
Wang
,
C.
,
Cheng
,
K.
,
Chen
,
X.
,
Minton
,
T.
, and
Rakowski
,
R.
,
2014
, “
Design of an Instrumented Smart Cutting Tool and Its Implementation and Application Perspectives
,”
Smart Mater. Struct.
,
23
(
3
), pp.
623
626
.
13.
Huo
,
D.
,
Cheng
,
K.
, and
Wardle
,
F.
,
2010
, “
Design of a Five-Axis Ultra-Precision Micro-Milling Machine–UltraMill—Part 1: Holistic Design Approach, Design Considerations and Specifications
,”
Int. J. Adv. Manuf. Technol.
,
47
, pp.
867
877
.
14.
Huo
,
D.
,
Cheng
,
K.
, and
Wardle
,
F.
,
2010
, “
Design of a 5-Axis Ultra precision Micro-Milling Machine–Ultramill—Part 2: Integrated Dynamic Modelling, Design Optimization and Analysis
,”
Int. J. Adv. Manuf. Technol.
,
47
, pp.
879
890
.
You do not currently have access to this content.