A novel directional freezing based three-dimensional (3D) printing technique is applied to fabricate graphene aerogel (GA). Thermal property of the graphene ink is one of the key impacts on the material morphology and process efficiency/reliability. We develop a heat transfer model to predict temperature evolution of the printed materials and then estimate layer waiting time based on it. The proposed technique can not only improve the process efficiency and reliability but also serve as a flexible tool to predict and control the microstructure of the printed graphene aerogels. Both the simulation and experiment results demonstrate the efficiency and effectiveness of the proposed approach.

References

References
1.
Balandin
,
A. A.
,
Ghosh
,
S.
,
Bao
,
W.
,
Calizo
,
I.
,
Teweldebrhan
,
D.
,
Miao
,
F.
, and
Lau
,
C. N.
,
2008
, “
Superior Thermal Conductivity of Single-Layer Graphene
,”
Nano Lett.
,
8
(
3
), pp.
902
907
.
2.
Lee
,
C.
,
Wei
,
X.
,
Kysar
,
J. W.
, and
Hone
,
J.
,
2008
, “
Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene
,”
Science
,
321
(
5887
), pp.
385
388
.
3.
Neto
,
A. C.
,
Guinea
,
F.
,
Peres
,
N.
,
Novoselov
,
K. S.
, and
Geim
,
A. K.
,
2009
, “
The Electronic Properties of Graphene
,”
Rev. Mod. Phys.
,
81
(
1
), p.
109
.
4.
Novoselov
,
K. S.
,
Geim
,
A. K.
,
Morozov
,
S.
,
Jiang
,
D.
,
Zhang
,
Y.
,
Dubonos
,
S. A.
,
Grigorieva
,
I.
, and
Firsov
,
A.
,
2004
, “
Electric Field Effect in Atomically Thin Carbon Films
,”
Science
,
306
(
5696
), pp.
666
669
.
5.
Geim
,
A. K.
, and
Novoselov
,
K. S.
,
2007
, “
The Rise of Graphene
,”
Nat. Mater.
,
6
(
3
), pp.
183
191
.
6.
Cong
,
H.-P.
,
Wang
,
P.
, and
Yu
,
S.-H.
,
2013
, “
Stretchable and Self-Healing Graphene Oxide–Polymer Composite Hydrogels: A Dual-Network Design
,”
Chem. Mater.
,
25
(
16
), pp.
3357
3362
.
7.
Jakus
,
A. E.
,
Secor
,
E. B.
,
Rutz
,
A. L.
,
Jordan
,
S. W.
,
Hersam
,
M. C.
, and
Shah
,
R. N.
,
2015
, “
Three-Dimensional Printing of High-Content Graphene Scaffolds for Electronic and Biomedical Applications
,”
ACS Nano
,
9
(
4
), pp.
4636
4648
.
8.
Leigh
,
S. J.
,
Bradley
,
R. J.
,
Purssell
,
C. P.
,
Billson
,
D. R.
, and
Hutchins
,
D. A.
,
2012
, “
A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors
,”
PLoS One
,
7
(
11
), p.
e49365
.
9.
Maiti
,
U. N.
,
Lim
,
J.
,
Lee
,
K. E.
,
Lee
,
W. J.
, and
Kim
,
S. O.
,
2014
, “
Three-Dimensional Shape Engineered, Interfacial Gelation of Reduced Graphene Oxide for High Rate, Large Capacity Supercapacitors
,”
Adv. Mater.
,
26
(
4
), pp.
615
619
.
10.
Menzel
,
R.
,
Barg
,
S.
,
Miranda
,
M.
,
Anthony
,
D. B.
,
Bawaked
,
S. M.
,
Mokhtar
,
M.
,
Al-Thabaiti
,
S. A.
,
Basahel
,
S. N.
,
Saiz
,
E.
, and
Shaffer
,
M. S.
,
2015
, “
Joule Heating Characteristics of Emulsion-Templated Graphene Aerogels
,”
Adv. Funct. Mater.
,
25
(
1
), pp.
28
35
.
11.
Wicklein
,
B.
,
Kocjan
,
A.
,
Salazar-Alvarez
,
G.
,
Carosio
,
F.
,
Camino
,
G.
,
Antonietti
,
M.
, and
Bergström
,
L.
,
2015
, “
Thermally Insulating and Fire-Retardant Lightweight Anisotropic Foams Based on Nanocellulose and Graphene Oxide
,”
Nat. Nanotechnol.
,
10
(
3
), pp.
277
283
.
12.
Xu
,
X.
,
Li
,
H.
,
Zhang
,
Q.
,
Hu
,
H.
,
Zhao
,
Z.
,
Li
,
J.
,
Li
,
J.
,
Qiao
,
Y.
, and
Gogotsi
,
Y.
,
2015
, “
Self-Sensing, Ultralight, and Conductive 3D Graphene/Iron Oxide Aerogel Elastomer Deformable in a Magnetic Field
,”
ACS Nano
,
9
(
4
), pp.
3969
3977
.
13.
Ye
,
S.
,
Feng
,
J.
, and
Wu
,
P.
,
2013
, “
Highly Elastic Graphene Oxide–Epoxy Composite Aerogels Via Simple Freeze-Drying and Subsequent Routine Curing
,”
J. Mater. Chem. A
,
1
(
10
), pp.
3495
3502
.
14.
Vickery
,
J. L.
,
Patil
,
A. J.
, and
Mann
,
S.
,
2009
, “
Fabrication of Graphene–Polymer Nanocomposites With Higher-Order Three-Dimensional Architectures
,”
Adv. Mater.
,
21
(
21
), pp.
2180
2184
.
15.
Estevez
,
L.
,
Kelarakis
,
A.
,
Gong
,
Q.
,
Da'as
,
E. H.
, and
Giannelis
,
E. P.
,
2011
, “
Multifunctional Graphene/Platinum/Nafion Hybrids Via Ice Templating
,”
J. Am. Chem. Soc.
,
133
(
16
), pp.
6122
6125
.
16.
Bourell
,
D. L.
,
Leu
,
M. C.
, and
Rosen
,
D. W.
,
2009
, “
Roadmap for Additive Manufacturing: Identifying the Future of Freeform Processing
,” The University of Texas at Austin, Austin, TX, pp. 11–15.
17.
García-Tuñon
,
E.
,
Barg
,
S.
,
Franco
,
J.
,
Bell
,
R.
,
Eslava
,
S.
,
D'Elia
,
E.
,
Maher
,
R. C.
,
Guitian
,
F.
, and
Saiz
,
E.
,
2015
, “
Printing in Three Dimensions With Graphene
,”
Adv. Mater.
,
27
(
10
), pp.
1688
1693
.
18.
Zhu
,
C.
,
Han
,
T. Y.-J.
,
Duoss
,
E. B.
,
Golobic
,
A. M.
,
Kuntz
,
J. D.
,
Spadaccini
,
C. M.
, and
Worsley
,
M. A.
,
2015
, “
Highly Compressible 3D Periodic Graphene Aerogel Microlattices
,”
Nat. Commun.
,
6
, p. 6962.
19.
Barnett
,
E.
,
Angeles
,
J.
,
Pasini
,
D.
, and
Sijpkes
,
P.
,
2009
, “
Robot-Assisted Rapid Prototyping for Ice Structures
,”
IEEE International Conference on Robotics and Automation
,
ICRA'09
, May 12–17, pp.
146
151
.
20.
Bryant
,
F. D.
, and
Leu
,
M. C.
,
2009
, “
Predictive Modeling and Experimental Verification of Temperature and Concentration in Rapid Freeze Prototyping With Support Material
,”
ASME J. Manuf. Sci. Eng.
,
131
(
4
), p.
041020
.
21.
Ossino
,
A.
,
Barnett
,
E.
,
Angeles
,
J.
,
Pasini
,
D.
, and
Sijpkes
,
P.
,
2009
, “
Path Planning for Robot-Assisted Rapid Prototyping of Ice Structures
,”
Trans. Can. Soc. Mech. Eng.
,
33
(4), pp.
689
700
.
22.
Zhao
,
X.
,
Landers
,
R. G.
, and
Leu
,
M. C.
,
2010
, “
Adaptive Extrusion Force Control of Freeze-Form Extrusion Fabrication Processes
,”
ASME J. Manuf. Sci. Eng.
,
132
(
6
), p.
064504
.
23.
Sui
,
G.
, and
Leu
,
M. C.
,
2003
, “
Thermal Analysis of Ice Walls Built by Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
125
(
4
), pp.
824
834
.
24.
Liu
,
Q.
, and
Leu
,
M. C.
,
2007
, “
Finite Element Analysis of Solidification in Rapid Freeze Prototyping
,”
ASME J. Manuf. Sci. Eng.
,
129
(
4
), pp.
810
820
.
25.
Costa
,
S.
,
Duarte
,
F.
, and
Covas
,
J. A.
,
2011
, “
Using MATLAB to Compute Heat Transfer in Free Form Extrusion
,”
MATLAB—A Ubiquitous Tool for the Practical Engineer
,
C. M.
Ionescu
, ed., InTech, Rijeka, Croatia, p.
453
.
26.
Costa
,
S.
,
2013
, “
Free Form Extrusion: Extrusion of 3D Components Using Complex Polymeric Systems
,”
Ph.D. thesis
, Universidade de Minho, Braga, Portugal.
27.
Bellini
,
A.
,
Shor
,
L.
, and
Guceri
,
S. I.
,
2005
, “
New Developments in Fused Deposition Modeling of Ceramics
,”
Rapid Prototyping J.
,
11
(
4
), pp.
214
220
.
28.
Shen
,
N.
, and
Chou
,
K.
,
2012
, “
Thermal Modeling of Electron Beam Additive Manufacturing Process: Powder Sintering Effects
,”
ASME
Paper No. MSEC2012-7253.
29.
Zhang
,
Q.
,
Zhang
,
F.
,
Medarametla
,
S. P.
,
Li
,
H.
,
Zhou
,
C.
, and
Lin
,
D.
,
2016
, “
3D Printing of Graphene Aerogels
,”
Small
,
12
(
13
), pp.
1702
1708
.
30.
Moner-Girona
,
M.
,
Roig
,
A.
,
Molins
,
E.
, and
Llibre
,
J.
,
2003
, “
Sol-Gel Route to Direct Formation of Silica Aerogel Microparticles Using Supercritical Solvents
,”
J. Sol-Gel Sci. Technol.
,
26
(
1
), pp.
645
649
.
31.
Baumann
,
T. F.
,
Gash
,
A. E.
,
Chinn
,
S. C.
,
Sawvel
,
A. M.
,
Maxwell
,
R. S.
, and
Satcher
,
J. H.
,
2005
, “
Synthesis of High-Surface-Area Alumina Aerogels Without the Use of Alkoxide Precursors
,”
Chem. Mater.
,
17
(
2
), pp.
395
401
.
32.
Kakac
,
S.
, and
Yener
,
Y.
,
1993
,
Heat Conduction
,
Taylor and Francis
,
Washington, DC
, Chap. 2.
33.
Bergman
,
T. L.
,
Incropera
,
F. P.
, and
Lavine
,
A. S.
,
2011
,
Fundamentals of Heat and Mass Transfer
,
Wiley
,
Danvers, MA
, pp.
260
261
.
You do not currently have access to this content.