A hybrid thermoplastic forming process involving sequential micromolding and microdrawing operations is developed to manufacture the multifacet/curvilinear geometries found on most surgical blades. This is accomplished through an oblique drawing technique, i.e., drawing with a nonzero inclination angle. By applying time-varying force profiles during the drawing operation, a wide range of complex blade geometries is possible. Experiments have exhibited positive results across several multifacet and curvilinear blade geometries. Manufacturing process capabilities are quantitatively evaluated and experimental results have measured the bulk metallic glass (BMG) blade cutting edge radii to be consistently less than 15 nm, rake face surface roughness Ra to be on the order of 20 nm, and edge straightness deviations to be less than 5 μm root-mean-square (RMS) while retaining an amorphous atomic structure.

References

References
1.
Angunawela
,
R.
,
Von Mohrensfels
,
C. W.
, and
Marshall
,
J.
,
2005
, “
A New Age of Cataract Surgery
,”
Cataract Refractive Surg. Today
,
5
, pp.
36
38
.
2.
Williamson
,
C. H.
,
2007
, “
Diamond Knives: Are They the Clear Choice for Clear Corneal Cataract Surgery?
,”
Cataract Refractive Surg. Today
,
6
, pp.
82
84
.
3.
Krejcie
,
A. J.
,
2011
, “
Development of a Hybrid Process for Manufacturing Surgical-Grade Knife Blade Cutting Edges From Bulk Metallic Glass
,” M.S. thesis, University of Illinois Urbana-Champaign, Urbana, IL.
4.
Bruck
,
H. A.
,
Christman
,
T.
,
Rosakis
,
A. J.
, and
Johnson
,
W. L.
,
1994
, “
Quasi-Static Constitutive Behavior of Zr41.25Ti13.75Ni10Cu12.5Be22.5 Bulk Amorphous Alloys
,”
Scr. Metall. Mater.
,
30
(
4
), pp.
429
434
.
5.
Horton
,
J. A.
, and
Parsell
,
D. E.
,
2003
, “
Biomedical Potential of a Zirconium-Based Bulk Metallic Glass
,”
Material Research Society Symposium
, Vol.
754
, pp.
179
184
.
6.
Lu
,
J.
,
Ravichandran
,
G.
, and
Johnson
,
W. L.
,
2003
, “
Deformation Behavior of the Zr41.2Ti13.8Cu12.5Ni10Be22.5 Bulk Metallic Glass Over a Wide Range of Strain-Rates and Temperatures
,”
Acta Mater.
,
51
(
12
), pp.
3429
3443
.
7.
Schuh
,
C.
,
Hufnagel
,
T.
, and
Ramamurty
,
U.
,
2007
, “
Mechanical Behavior of Amorphous Alloys
,”
Acta Mater.
,
55
(
12
), pp.
4067
4109
.
8.
Schroers
,
J.
,
2010
, “
Processing of Bulk Metallic Glass
,”
Adv. Mater.
,
22
(
14
), pp.
1566
1597
.
9.
Henann
,
D. L.
,
Srivastava
,
V.
,
Taylor
,
H. K.
,
Hale
,
M. R.
,
Hardt
,
D. E.
, and
Anand
,
L.
,
2009
, “
Metallic Glasses: Viable Tool Materials for the Production of Surface Microstructures in Amorphous Polymers by Micro-Hot-Embossing
,”
J. Micromech. Microeng.
,
19
(
11
), p.
115030
.
10.
Schroers
,
J.
,
2005
, “
The Superplastic Forming of Bulk Metallic Glasses
,”
JOM
,
57
(
5
), pp.
35
39
.
11.
Adair
,
K.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2011
, “
Development of a Unique Topology for a Hard-Turning Micro-Scale Machine Tool
,”
J. Manuf. Processes
,
13
(
2
), pp.
75
84
.
12.
Hespanha
,
J. P.
,
2001
, “
Tutorial on Supervisory Control
,”
Control Using Logic and Switching—40th Conference on Decision and Control
.
13.
Liberzon
,
D.
,
2003
,
Switching in Systems and Control
,
Birkhäuser
,
Boston, MA
.
14.
Busch
,
R.
,
Schroers
,
J.
, and
Wang
,
W. H.
,
2007
, “
Thermodynamics and Kinetics of Bulk Metallic Glass
,”
MRS Bull.
,
32
(
8
), pp.
620
623
.
15.
Spaepen
,
F.
,
1977
, “
A Microscopic Mechanism for Steady State Inhomogeneous Flow in Metallic Glasses
,”
Acta Metall.
,
25
(
4
), pp.
407
415
.
16.
Bae
,
D. H.
,
Lim
,
H. K.
,
Kim
,
S. H.
,
Kim
,
D. H.
, and
Kim
,
W. T.
,
2002
, “
Mechanical Behavior of a Bulk Cu–Ti–Zr–Ni–Si–Sn Metallic Glass Forming Nano-Crystal Aggregate Bands During Deformation in the Supercooled Liquid Region
,”
Acta Mater.
,
50
(
7
), pp.
1749
1759
.
17.
Nieh
,
T.
,
2001
, “
Plasticity and Structural Instability in a Bulk Metallic Glass Deformed in the Supercooled Liquid Region
,”
Acta Mater.
,
49
(
15
), pp.
2887
2896
.
You do not currently have access to this content.