Transparent polycrystalline yttrium aluminum garnet (YAG) ceramics have garnered an increased level of interest for high-power laser applications due to their ability to be manufactured in large sizes and to be doped in relatively substantial concentrations. However, surface characteristics have a direct effect on the lasing ability of these materials, and a lack of a fundamental understanding of the polishing mechanisms of these ceramics remains a challenge to their utilization. The aim of this paper is to study the polishing characteristics of YAG ceramics using magnetic field-assisted finishing (MAF). MAF is a useful process for studying the polishing characteristics of a material due to the extensive variability of, and fine control over, the polishing parameters. An experimental setup was developed for YAG ceramic workpieces, and using this equipment with diamond abrasives, the surfaces were polished to subnanometer scales. When polishing these subnanometer surfaces with 0–0.1 μm mean diameter diamond abrasive, the severity of the initial surface defects governed whether improvements to the surface would occur at these locations. Polishing subnanometer surfaces with colloidal silica abrasive caused a worsening of defects, resulting in increasing roughness. Colloidal silica causes uneven material removal between grains and an increase in material removal at grain boundaries causing the grain structure of the YAG ceramic workpiece to become pronounced. This effect also occurred with either abrasive when polishing with iron particles, used in MAF to press abrasives against a workpiece surface, that are smaller than the grain size of the YAG ceramic.

References

References
1.
Maiman
,
T. H.
,
1960
, “
Stimulated Optical Radiation in Ruby
,”
Nature
,
187
(
4736
), pp.
493
494
.
2.
Maiman
,
T. H.
,
1960
, “
Optical and Microwave-Optical Experiments in Ruby
,”
Phys. Rev. Lett.
,
4
(
11
), pp.
546
566
.
3.
Geusic
,
J. E.
,
Marcos
,
H. M.
, and
Van Uitert
,
L. G.
,
1964
, “
Laser Oscillations in Nd-Doped Yttrium Aluminum, Yttrium Gallium and Gadolinium Garnets
,”
Appl. Phys. Lett.
,
4
(
10
), pp.
182
184
.
4.
de With
,
G.
, and
van Dijk
,
H. J. A.
,
1984
, “
Translucent Y3Al5O12 Ceramic
,”
Master. Res. Bull.
,
19
(
12
), pp.
1669
1674
.
5.
Mulder
,
C. A. M.
, and
de With
,
G.
,
1985
, “
Translucent Y3Al5O12 Ceramics: Electron Microscopy Characterization
,”
Solid State Ionics
,
16
, pp.
81
86
.
6.
Sekita
,
M.
,
Haneda
,
H.
,
Yanagitani
,
T.
, and
Shirasaki
,
S.
,
1990
, “
Induced Emission Cross Section of Nd:Y3Al5O12 Ceramics
,”
J. Appl. Phys.
,
67
(
1990
), pp.
453
458
.
7.
Ikesue
,
A.
,
Furusato
,
I.
, and
Kumata
,
K.
,
1995
, “
Fabrication and Optical Properties of High-Performance Polycrystalline Nd:YAG Ceramics for Solid-State Lasers
,”
J. Am. Ceram. Soc.
,
78
(
4
), pp.
1033
1040
.
8.
Lu
,
J.
,
Prabhu
,
M.
,
Xu
,
J.
,
Ueda
,
K.
,
Yagi
,
H.
,
Yanagitani
,
T.
, and
Kaminskii
,
A. A.
,
2000
, “
Highly Efficient 2% Nd:Yttrium Aluminum Garnet Ceramic Laser
,”
Appl. Phys. Lett.
,
77
(
23
), pp.
3707
3709
.
9.
Ikesue
,
A.
,
2002
, “
Polycrystalline Nd:YAG Ceramics Lasers
,”
Opt. Mater.
,
19
(
1
), pp.
183
187
.
10.
Taira
,
T.
, and
Paper
,
I.
,
2007
, “
RE3+-Ion-Doped YAG Ceramic Lasers
,”
IEEE J. Quantum Electron
.,
13
(
3
), pp.
798
809
.
11.
Yagi
,
H.
,
Yanagitani
,
T.
,
Takaichi
,
K.
,
Ueda
,
K.
, and
Kaminskii
,
A. A.
,
2007
, “
Characterizations and Laser Performances of Highly Transparent Nd3+: Y3Al5O12 Laser Ceramics
,”
Opt. Mater.
,
29
(
10
), pp.
1258
1262
.
12.
Ikesue
,
A.
, and
Aung
,
Y. L.
,
2006
, “
Synthesis and Performance of Advanced Ceramic Lasers
,”
J. Am. Ceram. Soc.
,
89
(
6
), pp.
1936
1944
.
13.
Lee
,
S. H.
,
Kochawattana
,
S.
,
Messing
,
G. L.
,
Dumm
,
J. Q.
,
Quarles
,
G.
, and
Castillo
,
V.
,
2006
, “
Solid-State Reactive Sintering of Transparent Polycrystalline Nd:YAG Ceramics
,”
J. Am. Ceram. Soc.
,
89
(
6
), pp.
1945
1950
.
14.
Ikesue
,
A.
,
Yoshida
,
K.
,
Yamamoto
,
T.
, and
Yamaga
,
I.
,
1997
, “
Optical Scattering Centers in Polycrystalline Nd:YAG Laser
,”
J. Am. Ceram. Soc.
,
80
(
6
), pp.
1517
1522
.
15.
Ikesue
,
A.
,
Aung
,
Y. L.
,
Taira
,
T.
,
Kamimura
,
T.
,
Yoshida
,
K.
, and
Messing
,
G. L.
,
2006
, “
Progress in Ceramic Lasers
,”
Annu. Rev. Mater. Res.
,
36
(
1
), pp.
397
429
.
16.
Fu
,
Y.
,
Li
,
J.
,
Liu
,
Y.
,
Liu
,
L.
,
Zhao
,
H.
, and
Pan
,
Y.
,
2015
, “
Influence of Surface Roughness on Laser-Induced Damage of Nd: YAG Transparent Ceramics
,”
Ceram. Int.
,
41
(
10
), pp.
12535
12542
.
17.
Marinescu
,
I. D.
,
Uhlmann
,
E.
, and
Doi
,
T.
,
2007
, “
Mechanochemical Polishing and Chemical Mechanical Polishing
,”
Handbook of Lapping and Polishing
,
CRC Press
,
Boca Raton, FL
, pp.
292
301
.
18.
Golini
,
D.
,
Jacobs
,
S.
,
Kordonski
,
W.
, and
Dumas
,
P.
,
1997
, “
Precision Optics Fabrication Using Magnetorheological Finishing
,”
Advanced Materials for Optics and Precision Structures
, M. Ealey, R. A. Paquin, and T. B. Parsonage, eds., Vol. CR67 of SPIE Critical Review Series, pp.
251
274
.
19.
Yamaguchi
,
H.
,
Yumoto
,
K.
,
Shinmura
,
T.
, and
Okazaki
,
T.
,
2009
, “
Study of Finishing of Wafers by Magnetic Field-Assisted Finishing
,”
J. Adv. Mech. Des. Syst. Manuf.
,
3
(
1
), pp.
35
46
.
You do not currently have access to this content.