Presently, nanomanufacturing capabilities limit the commercialization of a broader range of nanoscale structures with higher complexity, greater precision and accuracy, and a substantially improved performance. Atomic force microscopy (AFM)-based nanomachining is a promising technique to address current limitations and is considered a potential manufacturing (MFG) tool for operations such as machining, patterning, and assembling with in situ metrology and visualization. Most existing techniques for fabrication of nanofluidic channels involve the use of electron-beam lithography, which is a very expensive process that requires a lengthy calibration procedure. In this work, atomic force microscopy (AFM) is employed in the fabrication of nanofluidic channels for medical applications. Channels with various depths and widths are fabricated using AFM indentation and scratching. A nanoscale channel is mainly used in the study of the molecular behavior at single molecule level. The resulting device can be used for detecting, analyzing and separating biomolecules, DNA stretching, and separation of elite group of lysosome and other viruses. The nanochannels are integrated between microchannels and act as filters to separate biomolecules. Sharply developed vertical microchannels are produced from deep reaction ion etching. Poly-dimethylsiloxane (PDMS) bonding is performed to close the top surface of the silicon device. An experimental setup is used for testing by flowing fluid through the channels. A cost evaluation shows 47.7% manufacturing-time and 60.6% manufacturing-cost savings, compared to more traditional processes.

References

References
1.
Conlisk
,
A. T.
,
2005
, “
The Debye-Huckel Approximation: Its Use in Describing Electroosmotic Flow in Micro- and Nanochannels
,”
Electrophoresis
,
26
(
10
), pp.
1896
1912
.
2.
Tegenfeldt
,
J. O.
,
Prinz
,
C.
,
Cao
,
H.
,
Huang
,
R. L.
,
Austin
,
R. H.
,
Chou
,
S. Y.
,
Cox
,
E. C.
, and
Sturm
,
J. C.
,
2004
, “
Micro-And Nanofluidics for DNA Analysis
,”
Anal. Bioanal. Chem.
,
378
(
7
), pp.
1678
1692
.
3.
Sinha
,
P. M.
,
Valco
,
G.
,
Sharma
,
S.
,
Liu
,
X.
, and
Ferrari
,
M.
,
2004
, “
Nanoengineered Device for Drug Delivery Application
,”
Nanotechnology
,
15
(
10
), p.
S585
.
4.
Eijkel
,
J. C.
, and
Van Den Berg
,
A.
,
2005
, “
Nanofluidics: What Is It and What Can We Expect From It?
,”
Microfluid. Nanofluid.
,
1
(
3
), pp.
249
267
.
5.
Li
,
H.
, and
Huck
,
W. T. S.
,
2002
, “
Polymers in Nanotechnology
,”
Curr. Opin. Solid State Mater. Sci.
,
6
(
1
), pp.
3
8
.
6.
Mijatovic
,
D.
,
Eijkel
,
J.
, and
Van Den Berg
,
A.
,
2005
, “
Technologies for Nanofluidic Systems: Top-Down Vs. Bottom-Up: A Review
,”
Lab Chip
,
5
(
5
), pp.
492
500
.
7.
Qiao
,
R.
, and
Aluru
,
N.
,
2003
, “
Ion Concentrations and Velocity Profiles in Nanochannel Electroosmotic Flows
,”
J. Chem. Phys.
,
118
(
10
), pp.
4692
4701
.
8.
Krishnan
,
M.
,
Mönch
,
I.
, and
Schwille
,
P.
,
2007
, “
Spontaneous Stretching of DNA in a Two-Dimensional Nanoslit
,”
Nano Lett.
,
7
(
5
), pp.
1270
1275
.
9.
Cheng
,
G. J.
,
Pirzada
,
D.
, and
Dutta
,
P.
,
2005
, “
Design and Fabrication of a Hybrid Nanofluidic Channel
,”
J. Micro/Nanolithogr., MEMS, MOEMS
,
4
(
1
), p.
013009
.
10.
Kemery
,
P. J.
,
Steehler
,
J. K.
, and
Bohn
,
P. W.
,
1998
, “
Electric Field Mediated Transport in Nanometer Diameter Channels
,”
Langmuir
,
14
(
10
), pp.
2884
2889
.
11.
Karniadakis
,
G.
,
Beskok
,
A.
, and
Aluru
,
N.
,
2005
,
Microflows and Nanoflows: Fundamentals and Simulation
,
Springer
,
New York
.
12.
Israelachvili
,
J. N.
,
2011
,
Intermolecular and Surface Forces
,
Academic Press
,
Burlington, MA
.
13.
Wu
,
C. G. Y.
,
Prakash
,
S.
,
Gupta
,
C.
, and
Shannon
,
M. A.
,
2007
, “
Solid/Water Interface Charge Density of Surface Functionalized Materials Studies by Atomic Force Microscope
,”
233rd ACS National Meeting
, Chicago, IL, Mar. 25–29.
14.
Petersen
,
N. J.
,
Alarie
,
J. P.
,
Jacobson
,
S. C.
, and
Ramsey
,
J. M.
,
2003
, “
Polyelectrolyte Transport in Nanoconfined Channels
,”
7th International Conference on Miniaturized Chemical and Biochemical Analysis Systems
, Squaw Valley, CA.
15.
Prakash
,
S.
,
Yeom
,
J.
,
Jin
,
N.
,
Adesida
,
I.
, and
Shannon
,
M.
,
2006
, “
Characterization of Ionic Transport at the Nanoscale
,”
Proc. Inst. Mech. Eng., Part N
,
220
(
2
), pp.
45
52
.
16.
Freitas
Jr.,
R. A.
,
2005
, “
What is Nanomedicine?
,”
Nanomedicine
,
1
(
1
), pp.
2
9
.
17.
Tung
,
S.
,
Kim
,
J. W.
,
Malshe
,
A.
,
Lee
,
C.
, and
Pooran
,
R.
,
2003
, “
A Cellular Motor Driven Microfluidic System
,”
12th International Conference on Transducers, Solid-State Sensors, Actuators and Microsystems
, Vol.
1
, pp.
678
681
.
18.
Torcellini
,
N. L.
,
Paul
,
A.
, and
Judko
,
R.
,
2003
, “
Consumptive Water Use for Us Power Production
,” Technical Report No. NREL/TP-550-33905, National Renewable Energy Laboratory, Golden, CO.
19.
UNICEF and WHO
,
2005
, “
Water for Life: Making It Happen
,”
WHO/UNICEF Joint Monitoring Programme for Water Supply and Sanitation
,
World Health Organization
,
Geneva, Switzerland
, accessed Sept. 9, 2016, http://www.who.int/water_sanitation_health/monitoring/jmp2005/en/
20.
Cao
,
H.
,
Yu
,
Z.
,
Wang
,
J.
,
Tegenfeldt
,
J. O.
,
Austin
,
R. H.
,
Chen
,
E.
,
Wu
,
W.
, and
Chou
,
S. Y.
,
2002
, “
Fabrication of 10 nm Enclosed Nanofluidic Channels
,”
Appl. Phys. Lett.
,
81
(
1
), pp.
174
176
.
21.
Shipway
,
A. N.
,
Katz
,
E.
, and
Willner
,
I.
,
2000
, “
Nanoparticle Arrays on Surfaces for Electronic, Optical, and Sensor Applications
,”
ChemPhysChem
,
1
(
1
), pp.
18
52
.
22.
Liu
,
M.
,
Amro
,
N. A.
,
Chow
,
C. S.
, and
Liu
,
G. Y.
,
2002
, “
Production of Nanostructures of DNA on Surfaces
,”
Nano Lett.
,
2
(
8
), pp.
863
867
.
23.
Vettiger
,
P.
,
Despont
,
M.
,
Drechsler
,
U.
,
Duürig
,
U.
,
Häberle
,
W.
,
Lutwyche
,
M. I.
,
Rothuizen
,
H.
,
Stutz
,
R.
,
Widmer
,
R.
, and
Binnig
,
G. K.
,
2000
, “
The ‘Millipede’—More Than One Thousand Tips for Future AFM Data Storage
,”
IBM J. Res. Dev.
,
44
(
3
), pp.
323
340
.
24.
Taylor
,
C. R.
,
Stach
,
E. A.
,
Salamo
,
G.
, and
Malshe
,
A. P.
,
2005
, “
Nanoscale Dislocation Patterning by Ultralow Load Indentation
,”
Appl. Phys. Lett.
,
87
(
7
), p.
073108
.
25.
Zheng
,
G. F.
,
Patolsky
,
F.
,
Cui
,
Y.
,
Wang
,
W. U.
, and
Lieber
,
C. M.
,
2005
, “
Multiplexed Electrical Detection of Cancer Markers With Nanowire Sensor Arrays
,”
Nat. Biotechnol.
,
23
(
10
), pp.
1294
1301
.
26.
Li
,
X.
,
Gao
,
H.
,
Murphy
,
C. J.
, and
Caswell
,
K. K.
,
2003
, “
Nanoindentation of Silver Nanowires
,”
Nano Lett.
,
3
(
11
), pp.
1495
1498
.
27.
Li
,
X.
,
Nardi
,
P.
,
Baek
,
C. W.
,
Kim
,
J. M.
, and
Kim
,
Y. K.
,
2005
, “
Direct Nanomechanical Machining of Gold Nanowires Using a Nanoindenter and an Atomic Force Microscope
,”
J. Micromech. Microeng.
,
15
(
3
), pp.
551
556
.
28.
Yan
,
Y. D.
,
Sun
,
T.
,
Zhao
,
X. S.
,
Hu
,
Z. J.
, and
Dong
,
S.
,
2008
, “
Fabrication of Microstructures on the Surface of a Micro/Hollow Target Ball by AFM
,”
J. Micromech. Microeng.
,
18
(
3
), p.
035002
.
29.
Chen
,
Y. J.
,
Hsu
,
J. H.
, and
Lin
,
H. N.
,
2005
, “
Fabrication of Metal Nanowires by Atomic Force Microscopy Nanoscratching and Lift-off Process
,”
Nanotechnology
,
16
(
8
), pp.
1112
1115
.
30.
Mao
,
Y. T.
,
Kuo
,
K. C.
,
Tseng
,
C. E.
,
Huang
,
J. Y.
,
Lai
,
Y. C.
,
Yen
,
J. Y.
,
Lee
,
C. K.
, and
Chuang
,
W. L.
,
2009
, “
Research on Three Dimensional Machining Effects using Atomic Force Microscope
,”
Rev. Sci. Instrum.
,
80
(
6
), p.
065105
.
31.
Fang
,
T.
,
Weng
,
C.
, and
Chang
,
J.
,
2000
, “
Machining Characterization of Nano-Lithography Process Using Atomic Force Microscopy
,”
Nanotechnology
,
11
(
3
), pp.
181
187
.
32.
Yan
,
Y. D.
,
Dong
,
S.
, and
Sun
,
T.
,
2005
, “
3D Force Components Measurement in AFM Scratching Tests
,”
Ultramicroscopy
,
105
(
1–4
), pp.
62
71
.
33.
Yan
,
Y.
,
Sun
,
T.
,
Liang
,
Y.
, and
Dong
,
S.
,
2007
, “
Investigation on AFM-Based Micro/Nano-CNC Machining System
,”
Int. J. Mach. Tools Manuf.
,
47
(
11
), pp.
1651
1659
.
34.
Zhang
,
F.
,
Zhang
,
H.
,
Yan
,
Y.
, and
Wang
,
J.
,
2008
, “
Research on Nano-Scale Material Removal Process Using Atomic Force Microscopy
,”
Key Eng. Mater.
,
359–360
, pp.
269
273
.
35.
Zhang
,
H.
,
Kuai
,
J.
, and
Zhang
,
F.
,
2010
, “
Minimum Thickness of Cut in Nanomachining Using Atomic Force Microscopy
,”
2010 International Conference on E-Product E-Service and E-Entertainment (ICEEE)
, Henan, China, pp.
1
4
.
36.
Tseng
,
A. A.
,
Shirakashi
,
J.
,
Nishimura
,
S.
,
Miyashita
,
K.
, and
Li
,
Z.
,
2010
, “
Nanomachining of Permalloy for Fabricating Nanoscale Ferromagnetic Structures Using Atomic Force Microscopy
,”
J. Nanosci. Nanotechnol.
,
10
(
1
), pp.
456
466
.
37.
Wang
,
Z. Q.
,
Jiao
,
N. D.
,
Tung
,
S.
, and
Dong
,
Z. L.
,
2011
, “
Atomic Force Microscopy-Based Repeated Machining Theory for Nanochannels on Silicon Oxide Surfaces
,”
Appl. Surf. Sci.
,
257
(
8
), pp.
3627
3631
.
38.
Cheong
,
W. C. D.
, and
Zhang
,
L. C.
,
2000
, “
Molecular Dynamics Simulation of Phase Transformations in Silicon Monocrystals Due to Nano-indentation
,”
Nanotechnology
,
11
(
3
), pp.
173
180
.
You do not currently have access to this content.