A computational model to investigate the flushing of electric discharge machining (EDM) debris from the interelectrode gap during the spray-EDM process is developed. Spray-EDM differs from conventional EDM in that an atomized dielectric spray is used to generate a thin film that penetrates the interelectrode gap. The debris flushing in spray-EDM is investigated by developing models for three processes, viz., dielectric spray formation, film formation, and debris flushing. The range of spray system parameters including gas pressure and impingement angle that ensure formation of dielectric film on the surface is identified followed by the determination of dielectric film thickness and velocity. The debris flushing in conventional EDM with stationary dielectric and spray-EDM processes is then compared. It is observed that the dielectric film thickness and velocity play a significant role in removing the debris particles from the machining region. The model is used to determine the spray conditions that result in enhanced debris flushing with spray-EDM.

References

References
1.
Houman
,
L.
,
1977
, “
How to Estimate EDM Time Requirements
,” Metal Stamping, Technical Report No. 11–15.
2.
Lonardo
,
P.
, and
Bruzzone
,
A.
,
1999
, “
Effect of Flushing and Electrode Material on Die Sinking EDM
,”
CIRP Ann.-Manuf. Technol.
,
48
(
1
), pp.
123
126
.
3.
Wong
,
Y.
,
Lim
,
L.
, and
Lee
,
L.
,
1995
, “
Effects of Flushing on Electro-Discharge Machined Surfaces
,”
J. Mater. Process. Technol.
,
48
(
1–4
), pp.
299
305
.
4.
Benedict
,
G. F.
,
1987
, “
Electrical Discharge Machining
,”
Non-Traditional Manufacturing Processes
,
Marcel Dekker
,
New York
, pp.
211
213
.
5.
Masuzawa
,
T.
, and
Heuvelman
,
C.
,
1983
, “
A Self-Flushing Method With Spark-Erosion Machining
,”
CIRP Ann.-Manuf. Technol.
,
32
(
1
), pp.
109
111
.
6.
Masuzawa
,
T.
,
Cui
,
X.
, and
Taniguchi
,
N.
,
1992
, “
Improved Jet Flushing for EDM
,”
CIRP Ann.-Manuf. Technol.
,
41
(
1
), pp.
239
242
.
7.
Goh
,
C. L.
, and
Ho
,
S. F.
,
1993
, “
Contact Dermatitis From Dielectric Fluids in Electro-Discharge Machining
,”
Contact Dermatitis
,
28
(
3
), pp.
134
138
.
8.
Tonshoff
,
H. K.
,
Egger
,
R.
, and
Klocke
,
F.
,
1996
, “
Environmental and Safety Aspects of Electrophysical and Electrochemical Processes
,”
CIRP Ann.-Manuf. Technol.
,
45
(
2
), pp.
553
568
.
9.
Pattabhiraman
,
A.
,
Marla
,
D.
, and
Kapoor
,
S. G.
,
2015
, “
Atomized Dielectric Spray-Based Electric Discharge Machining for Sustainable Manufacturing
,”
ASME J. Micro Nano Manuf.
,
3
(
4
), p.
041008
.
10.
Wang
,
J.
,
Han
,
F.
,
Cheng
,
G.
, and
Zhao
,
F.
,
2012
, “
Debris and Bubble Movements During Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
58
, pp.
11
18
.
11.
Cetin
,
S.
,
Okada
,
A.
, and
Uno
,
Y.
,
2004
, “
Effect of Debris Distribution on Wall Concavity in Deep-Hole EDM
,”
JSME Int. J. Ser. C: Mech. Syst. Mach. Elem. Manuf.
,
47
(
2
), pp.
553
559
.
12.
Okada
,
A.
,
Uno
,
Y.
,
Onoda
,
S.
, and
Habib
,
S.
,
2009
, “
Computational Fluid Dynamics Analysis of Working Fluid Flow and Debris Movement in Wire EDMed Kerf
,”
CIRP Ann.-Manuf. Technol.
,
58
(
1
), pp.
209
212
.
13.
Wang
,
J.
, and
Han
,
F.
,
2014
, “
Simulation Model of Debris and Bubble Movement in Electrode Jump of Electrical Discharge Machining
,”
Int. J. Adv. Manuf. Technol.
,
74
(
5–8
), pp.
591
598
.
14.
Mastud
,
S.
,
Kothari
,
N.
,
Singh
,
R.
, and
Joshi
,
S.
,
2014
, “
Modeling Debris Motion in Vibration Assisted Reverse Micro Electrical Discharge Machining Process (R-MEDM)
,”
J. Microelectromech. Syst.
,
24
(
3
), pp.
661
676
.
15.
Jun
,
M. B.
,
Joshi
,
S. S.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031118
.
16.
Nath
,
C.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
,
Srivastava
,
A. K.
, and
Iverson
,
J.
,
2012
, “
Design and Evaluation of an Atomization-Based Cutting Fluid Spray System in Turning of Titanium Alloy
,”
J. Manuf. Processes
,
14
(
4
), pp.
452
459
.
17.
Rukosuyev
,
M.
,
Goo
,
C. S.
, and
Jun
,
M. B. G.
,
2010
, “
Understanding the Effects of the System Parameters of an Ultrasonic Cutting Fluid Application System for Micro-Machining
,”
J. Manuf. Processes
,
12
(
2
), pp.
92
98
.
18.
Mundo
,
C.
,
Sommerfeld
,
M.
, and
Tropea
,
C.
,
1995
, “
Droplet-Wall Collisions: Experimental Studies of the Deformation and Breakup Process
,”
Int. J. Multiphase Flow
,
21
(
2
), pp.
151
173
.
19.
Yarin
,
A. L.
, and
Weiss
,
D. A.
,
1995
, “
Impact of Drops on Solid Surfaces: Self-Similar Capillary Waves, and Splashing as a New Type of Kinematic Discontinuity
,”
J. Fluid Mech.
,
283
, pp.
141
173
.
20.
Kao
,
C. C.
,
Tao
,
J.
, and
Shih
,
A. J.
,
2007
, “
Near Dry Electrical Discharge Machining
,”
Int. J. Mach. Tools Manuf.
,
47
(
15
), pp.
2273
2281
.
21.
ANSYS Academic Research
,
2013
, “
Help System: ANSYS Fluent User's Guide
,” Release 15.0, ANSYS, Inc., Canonsburg, PA.
22.
Khatami
,
S. M. N.
, and
Ilegbusi
,
O. J.
,
2011
, “
Modeling of Aerosol Spray Characteristics for Synthesis of Mixed-Oxide Nanocomposite Sensor Film
,”
ASME
Paper No. IMECE2011-62252.
23.
Jeyakumar
,
M.
,
Gupta
,
G. S.
, and
Kumar
,
S.
,
2008
, “
Modeling of Gas Flow Inside and Outside the Nozzle Used in Spray Deposition
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
471
479
.
24.
Weiner
,
K. L.
, and
Parkin
,
C. S.
,
1993
, “
The Use of Computational Fluid Dynamic Code for Modelling Spray From a Mistblower
,”
J. Agric. Eng. Res.
,
55
(
4
), pp.
313
324
.
25.
ANSYS Academic Research
,
2013
, “
Help System: ANSYS Fluent Tutorial Guide
,” Release 15.0, ANSYS, Inc., Canonsburg, PA.
26.
ANSYS Academic Research
,
2013
, “
Help System: ANSYS Fluent Theory Guide
,” Release 15.0, ANSYS, Inc., Canonsburg, PA.
27.
Morsi
,
S. A.
, and
Alexander
,
A. J.
,
1972
, “
An Investigation of Particle Trajectories in Two-Phase Flow Systems
,”
J. Fluid Mech.
,
55
(
2
), pp.
193
208
.
28.
Dobre
,
M.
, and
Bolle
,
L.
,
2002
, “
Practical Design of Ultrasonic Spray Devices: Experimental Testing of Several Atomizer Geometries
,”
Exp. Therm. Fluid Sci.
,
26
(
2–4
), pp.
205
211
.
29.
Witze
,
P. O.
,
1974
, “
Centerline Velocity Decay of Compressible Free Jets
,”
AIAA J.
,
12
(
4
), pp.
417
418
.
30.
Boughner
,
K. J.
,
Wentz
,
J. E.
, and
Garske
,
B. J.
,
2011
, “
Development and Validation of a Mathematical Model of Microfilm Formation in Atomization Cooling of Micromachining
,”
ASME
Paper No. IMECE2011-65302.
31.
Rajurkar
,
K.
, and
Pandit
,
S.
,
1986
, “
Formation and Ejection of EDM Debris
,”
J. Eng. Ind.
,
108
(
1
), pp.
22
26
.
32.
Mujumdar
,
S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
.
33.
Patel
,
M.
,
Barrufet
,
M.
,
Eubank
,
P.
, and
DiBitonto
,
D.
,
1989
, “
Theoretical Models of the Electrical Discharge Machining Process. II. The Anode Erosion Model
,”
J. Appl. Phys.
,
66
(
9
), pp.
4104
4111
.
You do not currently have access to this content.