In micro electro-discharge machining (micro-EDM), it is believed that electrical conductivity of the dielectric modified by additives plays an important role in discharge initiation and electrical breakdown, thereby affecting the process characteristics including process accuracy, material removal rate (MRR), and surface finish. However, there has been a lack of systematic efforts to evaluate the effect of dielectric conductivity in micro-EDM. This paper investigates the role of electrical conductivity of the dielectric on the breakdown, plasma characteristics, and material removal in micro-EDM via modeling and experimentation. Experiments have been carried out at four levels of electrical conductivity of saline water, i.e., 4 μS/cm, 362 μS/cm, 1106 μS/cm, and 4116 μS/cm, to study electrical breakdown of the dielectric and resulting craters. A global modeling approach is employed to model the micro-EDM plasma in saline water and predict the effect of dielectric conductivity on electron density, plasma temperature, heat flux to anode, plasma resistance, and discharge energy. It is found from both experiments and model-based simulations that increase in the dielectric conductivity facilitates the electrical breakdown of the dielectric by lowering the minimum breakdown potential at a given interelectrode gap. Experimental results also show increase in the volume of material removed per discharge when dielectric conductivity is increased, which is attributed to the increase in anode heat flux predicted by the micro-EDM plasma model. The model also predicts increase in electron density, decrease in plasma resistance, and decrease in discharge energy as the dielectric conductivity increases.

References

References
1.
Uriarte
,
L. G.
,
Herrero
,
A.
,
Ivanov
,
A.
,
Oosterling
,
H.
,
Staemmler
,
L.
,
Tang
,
P.
, and
Allen
,
D.
,
2006
, “
Comparison Between Microfabrication Technologies for Metal Tooling
,”
Proc. Inst. Mech. Eng., Part C
,
220
(
11
), pp.
1665
1676
.
2.
Heinz
,
K. G.
,
2010
, “
Fundamental Study of Magnetic Field-Assisted Micro-EDM for Non-Magnetic Materials
,” M.S. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
3.
Prihandana
,
G. S.
,
Mahardika
,
M.
,
Hamdi
,
M.
,
Wong
,
Y. S.
, and
Mitsui
,
K.
,
2009
, “
Effect of Micro-Powder Suspension and Ultrasonic Vibration of Dielectric Fluid in Micro-EDM Processes—Taguchi Approach
,”
Int. J. Mach. Tools Manuf.
,
49
(
12–13
), pp.
1035
1041
.
4.
Wang
,
J.
,
Wang
,
Y. G.
, and
Zhao
,
F. L.
,
2009
, “
Simulation of Debris Movement in Micro Electrical Discharge Machining of Deep Holes
,”
Mater. Sci. Forum
,
626–627
, pp.
267
272
.
5.
Krishna Kiran
,
M. P. S.
, and
Joshi
,
S. S.
,
2007
, “
Modeling of Surface Roughness and the Role of Debris in Micro-EDM
,”
ASME J. Manuf. Sci. Eng.
,
129
(
2
), pp.
265
273
.
6.
Chow
,
H.-M.
,
Yan
,
B.-H.
,
Huang
,
F.-Y.
, and
Hung
,
J.-C.
,
2000
, “
Study of Added Powder in Kerosene for the Micro-Slit Machining of Titanium Alloy Using Electro-Discharge Machining
,”
J. Mater. Process. Technol.
,
101
(
1–3
), pp.
95
103
.
7.
Chung
,
D. K.
,
Shin
,
H. S.
,
Kim
,
B. H.
,
Park
,
M. S.
, and
Chu
,
C. N.
,
2009
, “
Surface Finishing of Micro-EDM Holes Using Deionized Water
,”
J. Micromech. Microeng.
,
19
(
4
), p.
045025
.
8.
Klocke
,
F.
,
Lung
,
D.
,
Antonoglou
,
G.
, and
Thomaidis
,
D.
,
2004
, “
The Effects of Powder Suspended Dielectrics on the Thermal Influenced Zone by Electrodischarge Machining With Small Discharge Energies
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
191
197
.
9.
Ito
,
A.
,
Hayakawa
,
S.
,
Itoigawa
,
F.
, and
Nakamura
,
T.
,
2012
, “
Effect of Short-Circuiting in Electrical Discharge Machining of Carbon Fiber Reinforced Plastics
,”
J. Adv. Mech. Des., Syst., Manuf.
,
6
(
6
), pp.
808
814
.
10.
Yeo
,
S. H.
,
Tan
,
P. C.
, and
Kurnia
,
W.
,
2007
, “
Effects of Powder Additives Suspended in Dielectric on Crater Characteristics for Micro Electrical Discharge Machining
,”
J. Micromech. Microeng.
,
17
(
11
), pp.
91
98
.
11.
Jones
,
H. M.
, and
Kunhardt
,
E. E.
,
1995
, “
Development of Pulsed Dielectric Breakdown in Liquids
,”
J. Phys. D: Appl. Phys.
,
28
(
1
), pp.
178
188
.
12.
Zhu
,
T.
,
Zhang
,
Q.
,
Jia
,
Z.
, and
Yang
,
L.
,
2009
, “
The Effect of Conductivity on Streamer Initiation and Propagation Between Dielectric-Coated Sphere-Plate Electrodes in Water
,”
IEEE Trans. Dielectr. Electr. Insul.
,
16
(
6
), pp.
1552
1557
.
13.
Zhu
,
L.
,
He
,
Z.-H.
,
Gao
,
Z.-W.
,
Tan
,
F.-L.
,
Yue
,
X.-G.
, and
Chang
,
J.-S.
,
2014
, “
Research on the Influence of Conductivity to Pulsed Arc Electrohydraulic Discharge in Water
,”
J. Electrost.
,
72
(
1
), pp.
53
58
.
14.
Bernardes
,
J.
, and
Rose
,
M. F.
,
1983
, “
Electrical Breakdown Characteristics of Sodium Chloride—Water Mixtures
,”
4th IEEE Pulsed Power Conference
, Albuquerque, NM, pp.
308
311
.
15.
Ushakov
,
V. Y.
,
Semkina
,
O. P.
, and
Ryumin
,
V. V.
,
1972
, “
On the Nature of Pulse Electric Breakdown of Aqueous Electrolytes
,”
Appl. Electr. Phenom.
,
2
, pp.
37
42
.
16.
Tariq Jilani
,
S.
, and
Pandey
,
P. C.
,
1984
, “
Experimental Investigations Into the Performance of Water as Dielectric in EDM
,”
Int. J. Mach. Tool Manuf.
,
24
(
1
), pp.
31
43
.
17.
Kibria
,
G.
,
Sarkar
,
B. R.
,
Pradhan
,
B. B.
, and
Bhattacharyya
,
B.
,
2010
, “
Comparative Study of Different Dielectrics for Micro-EDM Performance During Microhole Machining of Ti-6Al-4V Alloy
,”
Int. J. Adv. Manuf. Technol.
,
48
(
5–8
), pp.
557
570
.
18.
Masuzawa
,
T.
,
Tsukamoto
,
J.
, and
Fujino
,
M.
,
1989
, “
Drilling of Deep Microholes by EDM
,”
CIRP Ann. Manuf. Technol.
,
38
(
1
), pp.
195
198
.
19.
Leão
,
F. N.
, and
Pashby
,
I. R.
,
2004
, “
A Review on the Use of Environmentally-Friendly Dielectric Fluids in Electrical Discharge Machining
,”
J. Mater. Process. Technol.
,
149
(
1–3
), pp.
341
346
.
20.
Nguyen
,
M. D.
,
Rahman
,
M.
, and
Wong
,
Y. S.
,
2012
, “
An Experimental Study on Micro-EDM in Low-Resistivity Deionized Water Using Short Voltage Pulses
,”
Int. J. Adv. Manuf. Technol.
,
58
(
5–8
), pp.
533
544
.
21.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
.
22.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2015
, “
Model-Based Prediction of Discharge Voltage and Current Waveforms in Micro-EDM
,”
ASME J. Micro Nano Manuf.
,
4
(
1
), p.
011003
.
23.
Lieberman
,
M. A.
, and
Lichtenberg
,
A. J.
,
2005
,
Principles of Plasma Discharges and Material Processing
,
Wiley
,
New York
.
24.
“Table of Conductivity vs Concentration for Common Solutions,” https://www.grc.com
25.
Mujumdar
,
S. S.
, and
Kapoor
,
S. G.
,
2016
, “
Effect of Dielectric Conductivity on Micro-EDM Characteristics Using Optical Spectroscopy
,”
International Conference on Micro-Manufacturing
, Paper No. 79.
26.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2015
, “
Modeling of Melt-Pool Formation and Material Removal in Micro-Electrodischarge Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031007
.
27.
Lee
,
C.
, and
Lieberman
,
M. A.
,
1995
, “
Global Model of Ar, O2, Cl2, and Ar/O2 High-Density Plasma Discharges
,”
J. Vac. Sci. Technol. A
,
13
(
2
), pp.
368
380
.
28.
“Morgan Database,” Last accessed Aug. 31, 2015, www.lxcat.net
29.
Buxton
,
G. V.
,
Greenstock
,
C. L.
,
Helman
,
W. P.
,
Ross
,
A. B.
, and
Tsang
,
W.
,
1988
, “
Critical Review of Rate Constants for Reactions of Hydrated Electrons, Hydrogen Atoms and Hydroxyl Radicals (OH/O−) in Aqueous Solution
,”
J. Phys. Chem. Ref. Data
,
17
(
2
), p.
513
.
30.
“Phelps Database,” Last accessed Aug. 31, 2015, www.lxcat.net
31.
Baulch
,
D. L.
,
Duxbury
,
J.
,
Grant
,
S. J.
, and
Montague
,
D. C.
,
1981
, “
Evaluated Kinetic Data for High Temperature Reactions. Volume 4 Homogeneous Gas Phase Reactions of Halogen- and Cyanide-Containing Species
,”
J. Phys. Chem. Ref. Data
,
10
(
Suppl. 1
), pp.
1
721
.
32.
Knipping
,
E. M.
, and
Dabdub
,
D.
,
2002
. “
Modeling Cl2 Formation From Aqueous NaCl Particles: Evidence for Interfacial Reactions and Importance of Cl2 Decomposition in Alkaline Solution
,”
J. Geophys. Res. Atmos.
,
107
(
D8
), pp.
ACH-1
ACH-30
.
33.
Wang
,
L.
,
Liu
,
J.
,
Li
,
Z.
,
Huang
,
X.
, and
Sun
,
C.
,
2003
, “
Theoretical Study and Rate Constant Calculation of the Cl + HOCl and H + HOCl Reactions
,”
J. Phys. Chem.
,
107
(
24
), pp.
4921
4928
.
34.
Anicich
,
V. G.
,
1993
, “
Evaluated Biomolecular Ion-Molecule Gas Phase Kinetics of Positive Ions for Use in Modeling Planetary Atmospheres, Cometary Comae, and Interstellar Clouds
,”
J. Phys. Chem. Ref. Data
,
22
(
6
), pp.
1469
1569
.
35.
DeMore
,
W. B.
,
Sander
,
S. P.
,
Golden
,
D. M.
,
Hampson
,
R. F.
,
Kurylo
,
M. J.
,
Howard
,
C. J.
,
Ravishankara
,
A. R.
,
Kolb
,
C. E.
, and
Molina
,
M. J.
,
1997
, “
Chemical Kinetics and Photochemical Data for Use in Stratospheric Modeling. Evaluation Number 12
,” Jet Propulstion Lab, Pasadena, CA,
JPL Publication 97–4
, pp.
1
266
.
36.
Bortner
,
M. H.
,
1964
, “
The Chemical Kinetics of Sodium in Re-Entry
,” Space Sciences Laboratory, General Electric Co.,
Report No. R64 SD33
.
37.
Patrick
,
R.
, and
Golden
,
D. M.
,
1984
, “
Termolecular Reactions of Alkali Metal Atoms With O2 and OH
,”
Int. J. Chem. Kinetics
,
16
(
12
), pp.
1567
1574
.
38.
Silver
,
J. A.
,
Stanton
,
A. C.
,
Zahniser
,
M.
, and
Kolb
,
C.
,
1984
, “
Gas-Phase Reaction Rate of Sodium Hydroxide With Hydrochloric Acid
,”
J. Phys. Chem.
,
88
(
14
), pp.
3123
3129
.
You do not currently have access to this content.