In spite of its applications in macromanufacturing processes, water jet processing has not been extensively applied to the field of micromanufacturing owing to its poor tolerance and lack of effective control of the jet impingement position. This paper investigates the phenomenon of liquid dielectrophoresis (LDEP) using a localized nonuniform static electric field to deflect and control the jet's trajectory at the microscale for a water jet in air. A new analytical modeling approach has been attempted by representing the stable length of a water jet as a deformable solid dielectric beam to solve for the deflection of the jet under the action of the electric field. This method bypasses the complicated flow analysis of the water jet in air and focuses specially on the effect of the electric field on the trajectory of a laminar water jet within the working length. The numerical analysis of the phenomena for this electrode configuration was carried out using comsol. Preliminary proof-of-concept experiments were conducted on a 350 μm diameter sized water jet flowing at 0.6 m/s using a pin plate electrode configuration where a deflection of around 10 deg was observed at 2000 V. The results from the simulation are in good agreement with the results obtained in the preliminary experiments. This novel approach of modeling the water jet as a deformable dielectric beam might be useful in numerous applications involving precise control of the water jet's trajectory particularly in microwater jet material processing.

References

References
1.
Kong
,
M. C.
, and
Axinte
,
D. A.
,
2011
, “
Capability of Advanced Abrasive Waterjet Machining and Its Applications
,”
Appl. Mech. Mater.
,
110–116
, pp.
1674
1682
.
2.
Momber
,
A. W.
, and
Kovacevic
,
R.
,
1998
,
Principles of Abrasive Water Jet Machining
,
Springer
,
London
.
3.
Chopade
,
S.
,
Kauthalkar
,
S.
, and
Sharma
,
P. K.
,
2013
, “
Abrasive Jet Machining
,”
Int. J. Modern Eng. Res.
,
3
(
3
), pp.
1504
1511
.
4.
Emmens
,
W. C.
,
2006
, “
Water Jet Forming of Steel Beverage Cans
,”
Int. J. Mach. Tool Manuf.
,
46
(
11
), pp.
1243
1247
.
5.
Iseki
,
H.
,
2001
, “
Flexible and Incremental Bulging of Sheet Metal Using High-Speed Water Jet
,”
JSME Int. J. Ser. C
,
44
(
2
), pp.
486
493
.
6.
Jurisevic
,
B.
,
Kuzman
,
K.
, and
Junkar
,
M.
,
2006
, “
Water Jetting Technology: An Alternative in Incremental Sheet Metal Forming
,”
Int. J. Adv. Manuf. Technol.
,
31
(
1
), pp.
18
23
.
7.
Lu
,
B.
,
Cao
,
J.
, and
Ou
,
H.
,
2011
, “
Theoretical and Numerical Analysis of Incremental Sheet Forming by Using High Pressure Water Jet
,”
ASME
Paper No. MSEC2011-50235.
8.
Richerzhagen
,
R.
,
Housh
,
R.
,
Wagner
,
F.
, and
Manley
,
J.
, 2004, “
Water Jet Guided Laser Cutting: A Powerful Hybrid Technology for Fine Cutting and Grooving
,”
Advanced Laser Applications Conference and Exposition
, pp.
175
181
.
9.
Hock
,
K.
,
Adelmann
,
B.
, and
Hellmann
,
R.
,
2012
, “
Comparative Study of Remote Fiber Laser and Water-Jet Guided Laser Cutting of Thin Metal Sheets
,”
Laser Assist. Net Shape Eng.
,
7
(
39
), pp.
225
231
.
10.
Courbon
,
C.
,
Kramar
,
D.
,
Krajnik
,
P.
,
Pusavec
,
F.
,
Rech
,
J.
, and
Kopac
,
J.
,
2009
, “
Investigation of Machining Performance in High-Pressure Jet Assisted Turning of Inconel 718: An Experimental Study
,”
Int. J. Mach. Tool Manuf.
,
49
(
14
), pp.
1114
1125
.
11.
Dahlman
,
P.
, and
Escursell
,
M.
,
2003
, “
High Pressure Jet-Assisted Cooling: A New Possibility for Near Net Shape Turning of Decarburized Steel
,”
Int. J. Mach. Tool Manuf.
,
44
(
1
), pp.
109
115
.
12.
Barnes
,
C.
,
Shrotriya
,
P.
, and
Molian
,
P.
,
2007
, “
Water-Assisted Laser Thermal Shock Machining of Alumina
,”
Int. J. Mach. Tool Manuf.
,
47
(
12–13
), pp.
1864
1874
.
13.
Saxena
,
I.
,
Agrawal
,
A.
, and
Joshi
,
S. S.
,
2009
, “
Fabrication of Microfilters Using Excimer Laser Micromachining and Testing of Pressure Drop
,”
J. Micromech. Microeng.
,
19
(
2
), p.
025025
.
14.
Saxena
,
I.
, and
Ehmann
,
K. F.
,
2014
, “
Multimaterial Capability of Laser Induced Plasma Micromachining
,”
ASME J. Micro Nano-Manuf.
,
2
(
3
), p.
031005
.
15.
Saxena
,
I.
,
Malhotra
,
R.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
High-Speed Fabrication of Microchannels Using Line-Based Laser Induced Plasma Micromachining
,”
ASME J. Micro Nano-Manuf.
,
3
(
2
), p.
021006
.
16.
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2015
, “
High Throughput Microfabrication Using Laser Induced Plasma in Saline Aqueous Medium
,”
J. Mater. Process. Technol.
,
217
, pp.
77
87
.
17.
Saxena
,
I.
,
Wolff
,
S.
, and
Cao
,
J.
,
2015
, “
Unidirectional Magnetic Field Assisted Laser Induced Plasma Micro-Machining
,”
Manuf. Lett.
,
3
, pp.
1
4
.
18.
Park
,
D.
,
Cho
,
M.
,
Lee
,
H.
, and
Cho
,
W.
,
2004
, “
Micro-Grooving of Glass Using Micro-Abrasive Jet Machining
,”
J. Mater. Process. Technol.
,
146
(
2
), pp.
122
128
.
19.
Pang
,
K. L.
,
Nguyen
,
T.
,
Fan
,
J. M.
, and
Wang
,
J.
,
2012
, “
A Study of Micro-Channeling on Glasses Using an Abrasive Slurry Jet
,”
Mach. Sci. Technol.
,
16
(
4
), pp.
547
563
.
20.
Sterling
,
A. M.
, and
Sleicher
,
C. A.
,
1975
, “
The Instability of Capillary Jets
,”
J. Fluid Mech.
,
68
(
3
), pp.
477
495
.
21.
Jones
,
T. B.
,
2001
, “
Liquid Dielectrophoresis on the Microscale
,”
J. Electrost.
,
51
, pp.
290
299
.
22.
Pethig
,
R.
,
2010
, “
Dielectrophoresis: Status of the Theory, Technology, and Applications
,”
Biomicrofluidics
,
4
(
2
), p.
022811
.
23.
Scott
,
2008
, “
Showing That Water Is a Polar Molecule
,” Physics & Physical Science Demos, Labs, and Projects for High School Teachers, http://www.teachingphysics.wordpress.com/2008/08/28/showing-that-water-is-a-polar-molecule/
24.
Taylor
,
G. W.
,
1972
, “
Liquid Optical Fibers
,”
Appl. Opt.
,
11
(
4
), pp.
786
790
.
25.
Vemulapalli
,
G. K.
, and
Kukolich
,
S. G.
,
1996
, “
Why Does a Stream of Water Deflect in an Electric Field
?”
J. Chem. Educ.
,
73
(
9
), pp.
887
888
.
26.
Ziaei-Moayyed
,
M.
,
Goodman
,
E.
, and
Williams
,
P.
,
2000
, “
Electrical Deflection of Polar Liquid Streams: A Misunderstood Demonstration
,”
J. Chem. Educ.
,
77
(
11
), pp.
1520
1523
.
27.
Shakhashiri
,
B. Z.
,
1983
,
Chemical Demonstrations: A Handbook for Teachers of Chemistry
,
University of Wisconsin Press
,
Madison, WI
.
28.
Melcher
,
J. R.
,
1963
,
Field-Coupled Surface Waves
,
MIT Press
,
Cambridge, MA
.
29.
Pellat
,
H.
,
1894
, “
Force agissant á la surface de séparation de deux diélectriques
,” C.R. Seances Acad. Sci. (Paris),
119
, pp.
675
678
.
30.
Jones
,
T. B.
,
Perry
,
M. P.
, and
Melcher
,
J. R.
,
1971
, “
Dielectric Siphons
,”
Science
,
174
(
4015
), pp.
1232
1233
.
31.
Berthier
,
J.
,
2008
,
Micro-Drops and Digital Microfluidics
,
Elsevier
,
Norwich, NY
.
32.
Sirringhaus
,
H.
,
Kawase
,
T.
,
Friend
,
R.
,
Shimoda
,
T.
,
Inbasekaran
,
M.
,
Wu
,
W.
, and
Woo
,
E.
,
2000
, “
High Resolution Inkjet Printing of All-Polymer Transistor Circuits
,”
Science
,
290
(
5499
), pp.
2123
2126
.
33.
Hughes
,
T. R.
,
Mao
,
M.
,
Jones
,
A. R.
,
Burchard
,
J.
,
Marton
,
M. J.
,
Shannon
,
K. W.
,
Lefkowitz
,
S. M.
,
Ziman
,
M.
,
Schelter
,
J. M.
,
Meyer
,
M. R.
,
Kobayashi
,
S.
,
Davis
,
C.
,
Dai
,
H.
,
He
,
Y. D.
,
Stephaniants
,
S. B.
,
Cavet
,
G.
,
Walker
,
W. L.
,
West
,
A.
,
Coffey
,
E.
,
Shoemaker
,
D. D.
,
Stoughton
,
R.
,
Blanchard
,
A. P.
,
Friend
,
S. H.
, and
Linsley
,
P. S.
,
2001
, “
Expression Profiling Using Microarrays Fabricated by an Ink-Jet Oligonucleotide Synthesizer
,”
Nat. Biotechnol.
,
19
(
4
), pp.
342
347
.
34.
Chiarot
,
P. R.
, and
Jones
,
T. B.
,
2009
, “
Dielectrophoretic Deflection of Ink Jets
,”
J. Micromech. Microeng.
,
19
(
12
), p.
125018
.
35.
Ekinci
,
K. L.
,
2005
, “
Electromechanical Transducers at the Nanoscale: Actuation and Sensing of Motion in Nanoelectromechanical Systems (NEMS)
,”
Small
,
1
(
8–9
), pp.
786
797
.
36.
Unterreithmeier
,
Q. P.
,
Weig
,
E. M.
, and
Kotthaus
,
J. P.
,
2009
, “
Universal Transduction Scheme for Nanomechanical Systems Based on Dielectric Forces
,”
Nature Lett.
,
458
(
7241
), pp.
1001
1004
.
37.
Pohl
,
H. A.
,
1978
,
Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields
,
Cambridge University Press
,
Cambridge, UK
.
38.
Stratton
,
J. A.
,
1941
,
Electromagnetic Theory
,
McGraw-Hill
,
New York
.
39.
Jones
,
T. B.
,
2003
, “
Basic Theory of Dielectrophoresis and Electrorotation: Methods for Determining the Forces and Torques Exerted by Nonuniform Electric Fields on Biological Particles Suspended in Aqueous Media
,”
IEEE Eng. Med. Biol.
,
22
(
6
), pp.
33
42
.
40.
Melcher
,
J. R.
,
1968
,
Electromechanical Dynamics, Part 1: Discrete Systems
,
Wiley
,
New York
.
41.
Mai
,
T. A.
,
Kling
,
N. U.
,
Vágó
,
N.
,
Richerzhagen
,
B.
, and
Stay
,
K.
,
2007
, “
Laser Microjet Technology—Fundamental Study and Highlights of Its Latest Applications
,”
ALAC
.
42.
Rayleigh
,
L.
,
1878
, “
On the Instability of Jets
,”
Proc. London Math. Soc.
,
10
(
1
), pp.
4
13
.
43.
Chandrasekhar
,
S.
,
1961
,
Hydrodynamic and Hydromagnetic Stability
,
Clarendon Press
,
Oxford
.
44.
McCarthy
,
M. J.
, and
Molloy
,
N. A.
,
1974
, “
Review of Stability of Liquid Jets and the Influence of Nozzle Design
,”
Chem. Eng. J.
,
7
(
1
), pp.
1
20
.
45.
Hoyt
,
J. W.
, and
Taylor
,
J. J.
,
1977
, “
Waves on Waterjets
,”
J. Fluid Mech.
,
83
(
1
), pp.
119
127
.
46.
Vágó
,
N.
,
Spiegel
,
A.
,
Couty
,
P.
,
Wagner
,
F. R.
, and
Richerzhagen
,
B.
,
2003
, “
New Technique for High-Speed Microjet Breakup Analysis
,”
Exp. Fluids
,
35
(
4
), pp.
303
309
.
47.
Blaisot
,
J. B.
, and
Adeline
,
S.
,
2000
, “
Determination of the Growth Rate of Instability of Low Velocity Free Falling Jets
,”
Exp. Fluids
,
29
(
3
), pp.
247
256
.
48.
Collicott
,
S. H.
,
Zhang
,
S.
, and
Schneider
,
S.
,
1994
, “
Quantitative Liquid Jet Instability Measurement System Using Asymmetric Magnification and Digital Image Processing
,”
Exp. Fluids
,
16
(
5
), pp.
345
348
.
49.
Xing
,
J. H.
,
Boguslawski
,
A.
,
Soucemarianadin
,
A.
,
Atten
,
P.
, and
Attané
,
P.
,
1996
, “
Experimental Investigation of Capillary Instability: Results on Jet Stimulated by Pressure Modulations
,”
Exp. Fluids
,
20
(
4
), pp.
302
313
.
50.
Couty
,
P.
,
Spiegel
,
A.
,
Vágó
,
N.
,
Ugurtas
,
B. I.
, and
Hoffmann
,
B.
,
2004
, “
Laser-Induced Break-Up of Water Jet Waveguide
,”
Exp. Fluids
,
36
(
6
), pp.
919
927
.
51.
Bhunia
,
S. K.
, and
Lienhard
,
J. H.
,
1994
, “
Surface Disturbance Evolution and the Splattering of Turbulent Liquid Jet
,”
ASME J. Fluid Eng.
,
116
(
4
), pp.
338
344
.
You do not currently have access to this content.