The advances in the Terahertz (THz) technology drive the needs for the design and manufacture of waveguide devices that integrate complex three-dimensional (3D) miniaturized components with meso- and micro-scale functional features and structures. Typical dimensions of the waveguide functional structures are in the range from 200 μm to 50 μm and dimensions decrease with the increase in the operating frequency of the waveguide devices. Technological requirements that are critical for achieving the desired microwave filtering performance of the waveguides include geometrical accuracy, alignment between functional features and surface integrity. In this context, this paper presents a novel manufacturing route for the scaled-up production of THz components that integrate computer numerical control (CNC) milling and laser micromachining. A solution to overcome the resulting tapering of the laser-machined structures while achieving a high accuracy and surface integrity of the machined features is applied in this research. In addition, an approach for two-side processing of waveguide structures within one laser machining setup is described. The capabilities of the proposed manufacturing process chain are demonstrated on two THz waveguide components that are functionally tested to assess the effects of the achieved machining results on devices' performance. Experimental results show that the proposed process chain can address the manufacturing requirements of THz waveguide filters, in particular the process chain is capable of producing filters with geometrical accuracy better than 10 μm, side wall taper angle deviation of less than 1 deg from vertical (90 deg), waveguide cavities corner radius better than 15 μm, and surface roughness (Sa) better than 1.5 μm. The manufacturing efficiency demonstrated in this feasibility study also provides sufficient evidences to argue that the proposed multistage manufacturing technique is a very promising solution for the serial production of small to medium batches of THz waveguide components. Finally, analyses of the manufacturing capabilities of the proposed process chain and the photoresist-based technologies were performed to clearly demonstrate the advantages of the proposed process chain over current waveguide fabrication solutions.

References

References
1.
Hosako
,
I.
,
Sekine
,
N.
,
Patrashin
,
M.
,
Saito
,
S.
,
Fukunaga
,
K.
,
Kasai
,
Y.
,
Baron
,
P.
,
Seta
,
T.
,
Mendrok
,
J.
,
Ochiai
,
S.
, and
Yasuda
,
H.
,
2007
, “
At the Dawn of a New Era in THz Technology
,”
Proc. IEEE
,
95
(
8
), pp.
1611
1623
.
2.
Li
,
Y.
,
Kirby
,
P. L.
, and
Papapolymerou
,
J.
,
2006
, “
Silicon Micromachined W Band Folded and Straight Waveguides Using DRIE Technique
,”
IEEE MTT-S Int. Microwave Symposium
, pp.
1915
1918
.
3.
Liao
,
Y. S.
, and
Chen
,
Y.-T.
,
2005
, “
Precision Fabrication of an Arrayed Micrometal Probe be the Laser-LIGA Process
,”
J. Micomech. Microeng.
,
15
(
12
), pp.
2433
2440
.
4.
Shang
,
X.
,
Kem
,
M.
,
Wang
,
Y.
, and
Lancaster
,
M. J.
,
2012
, “
WR-3 Band Waveguides and Filters Fabricated Using SU8 Photoresist Micro-Machining Technology
,”
IEEE Trans. THz Sci. Technol.
,
2
(
6
), pp.
629
637
.
5.
Stanec
,
J. R.
, and
Barker
,
N. S.
,
2011
, “
Fabrication and Integration of Micro-Machined Millimeter-Wave Circuits
,”
IEEE Microwave Wireless Component Lett.
,
21
(
8
), pp.
409
411
.
6.
Shang
,
M. L.
,
Ke
,
M. L.
,
Wang
,
Y.
, and
Lancaster
,
M. J.
,
2011
, “
Micromachined WR-3 Waveguide Filter With Embedded Bends
,”
Electron. Lett.
,
47
(
9
), pp.
545
547
.
7.
Lancaster
,
M. J.
,
Zhou,
J.
,
Ke
,
M.
,
Wang
,
Y.
, and
Jiang
,
K.
,
2007
, “
Design and High Performance of a Micromachined K-Band Rectangular Coaxial Cable
,”
IEEE Trans. Microwave Theory Tech.
,
55
(
7
), pp.
1548
1553
.
8.
Lewis
,
S. M.
,
Nanni
,
E. A.
, and
Temkin
,
R. J.
,
2014
, “
Direct Machining of Low-Loss THz Waveguide Components With an RF Choke
,”
IEEE Microwave Wireless Compon. Lett.
,
24
(
12
), pp.
842
844
.
9.
Popov
,
K.
,
Dimov
,
S.
,
Ivanov
,
A.
,
Pham
,
D. T.
, and
Gandarias
,
E.
,
2010
, “
New Tool-Workpiece Setting Up Technology for Micro-Milling
,”
Int. J. Adv. Manuf. Technol.
,
47
, pp.
21
27
.
10.
Popov
,
K.
,
Dimov
,
S.
,
Pham
,
D. T.
, and
Ivanov
,
A.
,
2006
, “
Micromilling Strategies for Machining Thin Features
,”
Proc. Inst. Mech. Eng. Part C
,
220
(
11
), pp.
1677
1784
.
11.
Dimov
,
S.
,
Brousseau
,
E.
,
Minev
,
R.
, and
Bigot
,
S.
,
2012
, “
Micro- and Nanomanufacturing: Challenges and Opportunities
,”
Proc. Inst. Mech. Eng. Part C
,
226
(
1
), pp.
3
15
.
12.
Chrisey
,
D. B.
, and
Pique
,
A.
,
2002
,
Direct-Write Technologies for Rapid Prototyping Applications
,
Academic Press
,
London
, Chap.1.
13.
Chu
,
W. S.
,
Chu
,
W.-S.
,
Kim
,
C.-S.
,
Lee
,
H.-T.
,
Choi
,
J.-O.
,
Park
,
J.-Il.
,
Song
,
J.-H.
,
Jang
,
K.-H.
, and
Ahn
,
S.-H.
,
2014
, “
Hybrid Manufacturing in Micro/Nano Scale: A Review
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
1
(
1
), pp.
75
92
.
14.
Schubert
,
A.
,
Großa
,
S.
,
Schulza
,
B.
, and
Eckerta
,
U.
,
2011
, “
Sequential Combination of Micro-Milling and Laser Structuring for Manufacturing of Complex Micro-Fluidic Structures
,”
Phys. Procedia
,
12
, pp.
221
229
.
15.
CST Microwave Studio Suite
,
2015
, Providing Complete Technology for High Frequency 3D EM Field Simulation, CST GmbH, Darmstadt, Germany, https://www.cst.com/Products/CSTMWS/Solvers.
16.
Butler-Smith
,
P. W.
,
Axinte
,
D. A.
, and
Daine
,
M.
,
2009
, “
Preferentially Oriented Diamond Micro-Arrays: A Laser Patterning Technique and Preliminary Evaluation of Their Cutting Forces and Wear Characteristics
,”
Int. J. Mach. Tools Manuf.
,
49
(
15
), pp.
1175
1184
.
17.
Pham
,
D. T.
,
Dimov
,
S. S.
, and
Petkov
,
P. V.
,
2007
, “
Laser Milling of Ceramic Components
,”
Int. J. Mach. Tools Manuf.
,
47
, pp.
618
626
.
18.
Pham
,
D. T.
,
Dimov
,
S. S.
,
Petkov
,
P. V.
, and
Dobrev
,
T.
,
2005
, “
Laser Milling for Micro–Tooling
,”
CU IMRC Working Paper Series
,
Cardiff University
,
Cardiff, UK
.
19.
Schaeffer
,
R. D.
,
2010
, “
Understanding and Controlling Taper When Laser Machining
,” Micro Manufacturing Magazine, Vol.
3
, http://www.micromanufacturing.com/content/understanding-and-controlling-taper-when-laser-machining
20.
Webb
,
C. E.
, and
Jones
,
J. D. C.
,
2005
,
Handbook of Laser Technology and Applications: Applications
,
IOP Publishing Ltd.
,
Bristol, UK
.
21.
Schille
,
J.
,
Schneider
,
L.
,
Loeschner
,
U.
,
Ebert
,
R.
,
Scully
,
P. J.
, and
Goddard
,
N. J.
,
2011
, “
Micro Processing of Metals Using a High Repetition Rate Femtosecond Laser: From Laser Process Parameter Study to Machining Examples
,”
International Congress on Applications of Lasers and Electro-Optics
, Orlando, FL, pp.
773
782
.
22.
Adelmann
,
B.
, and
Hellmann
,
R.
,
2015
, “
Rapid Micro Hole Laser Drilling in Ceramic Substrates Using Single Mode Fiber Laser
,”
J. Mater. Process. Technol.
,
221
, pp.
80
86
.
23.
Zhang
,
Y.
,
Wang
,
Y.
,
Zhang
,
J.
,
Liu
, Y.
,
Yang
,
X.
, and
Zhang
,
Q.
,
2015
, “
Micromachining Features of TiC Ceramic by Femtosecond Pulsed Laser
,”
Ceram. Int.
,
41
(
5
), pp.
6525
6533
.
24.
Huang
,
H.
,
Yang
,
L. M.
, and
Liu
,
J.
,
2014
, “
Micro-Hole Drilling and Cutting Using Femtosecond Fiber Laser
,”
Opt. Eng.
,
53
(
5
), p.
051513
.
25.
Minev
,
R.
,
Vella
,
P.
,
Brousseau
,
E.
,
Dimov
,
S.
,
Minev
,
E.
, and
Matthews
,
C.
,
2010
, “
Methodology for Capability Maturity Assessment of MNT chains
,”
The 4M Conference on Multi-Material Micro Manufacture
,
B.
Fillon
,
C.
Khan-Malek
, and
S.
Dimov
, eds.,
Bourg enBresses and Oyonnax
,
France
, pp.
249
253
.
26.
Bhaduri
,
D.
,
Penchev
,
P.
,
Dimov
,
S.
, and
Soo
,
S. L.
,
2015
, “
On Comparative Evaluation of Accuracy, Repeatability and Reproducibility of Laser Micromachining Systems
,”
The 4M/ICOMM Conference
,
M.
Annoni
,
I.
Fassi
,
G.
Wiens
, and
S.
Dimov
, eds.,
Milan, Italy
, pp.
597
600
.
27.
Daemi
,
B.
,
2014
, “
Image Analysis for Precision Metrology: Verification of Micro-Machining Systems and Aerodynamic Surfaces
,” Ph.D. thesis, KTH Royal Institute of Technology, Stockholm, Sweden.
28.
Penchev
,
P.
,
Bhadu
,
D.
,
Dimov
,
S.
, and
Soo
,
S. L.
,
2014
, “
Novel Manufacturing Platform for Scale Up Production of Miniaturized Components
,”
International Workshop on Microfactories
, Honolulu, Oct. 5–8, pp.
231
238
.
29.
Penchev
,
P.
,
Dimov
,
S.
,
Bhaduri
,
D.
, and
Soo
,
S. L.
, “
Generic Integration Tools for Reconfigurable Laser Micromachining Systems
,”
J. Manuf. Syst.
,
38
, pp.
27
45
.
30.
Bigot
,
S.
,
Minev
,
R.
,
Dimov
,
S.
, and
Dobrev
,
T.
,
2011
, “
Function and Length Scale Integration in Innovative Products—Technical Solutions and New Organisational Models
,”
Int. J. Manuf. Technol. Manage.
,
23
(3–4), pp.
157
178
.
31.
Penchev
,
P.
,
Dimov
,
S.
,
Bhaduri
,
D.
,
Soo
,
S. L.
, and
Crickboom
,
B.
, “
Generic Software Tool for Counteracting the Dynamics Effects of Optical Beam Delivery Systems
,”
Proc. Inst. Mech. Eng., Part B
., (e-pub ahead of print).
32.
Alicona
,
2015
, “
Form and Roughness in One System
,”
Alicona Focus Variation Magazine
,
5th, ed
, Alicona, Raaba, Austria.
33.
Vorobyev
,
A. Y.
, and
Guo
,
G.
,
2011
, “
Reflection of Femtosecond Laser Light in Multipulse Ablation of Metals
,”
J. Appl. Phys.
,
110
, p.
043102
.
34.
Schille
,
J.
,
Schneider
,
L.
,
Loeschner
,
U.
,
Ebert
,
R.
,
Scully
,
P. J.
, and
Goddard
,
N. J.
,
2014
, “
High speed Laser Micro Processing Using Ultrashort Laser Pulses
,”
J. Laser Micro/Nanoeng.
,
9
(
2
), pp.
161
168
.
35.
Wang
,
S. Y.
,
Ren
,
Y.
,
Cheng
,
C. W.
,
Chen
,
J. K.
, and
Tzou
,
D. Y.
,
2013
, “
Micromachining of Copper by Femtosecond Laser Pulses
,”
Appl. Surf. Sci.
,
265
, pp.
302
308
.
36.
Weck
,
A.
,
Crawford
,
T. R.
,
Wilkinson
,
D. S.
,
Haugen
,
H. K.
, and
Preston
,
J. S.
,
2008
, “
Ripple Formation During Deep Hole Drilling in Copper With Ultrashort Laser Pulses
,”
Appl. Phys. A
,
89
(4), pp.
1001
1003
.
37.
Byskov-Nielsen
,
J.
,
Savolainen
,
J-M.
,
Christensen
,
M. S.
, and
Balling
,
P.
,
2010
, “
Ultra-Short Pulse Laser Ablation of Metals: Threshold Fluence, Incubation Coefficient and Ablation Rates
,”
Appl. Phys. A
,
101
(
1
), pp.
97
101
.
38.
Petkov
,
P. V.
,
Dimov
,
S. S.
,
Minev
,
R. M.
, and
Pham
,
D. T.
,
2008
, “
Laser Milling: Pulse Duration Effects on Surface Integrity
,”
Proc. Inst. Mech. Eng. Part B
,
222
(
1
), pp.
35
45
.
39.
Kraus
,
M.
,
Ahmed
,
M. A.
,
Michalowski
,
A.
,
Voss
,
A.
,
Weber
,
R.
, and
Graf
,
T.
,
2010
, “
Microdrilling in Steel Using Ultrashort Pulsed Laser Beams With Radial and Azimuthal Polarization
,”
Opt. Express
,
18
(
21
), p.
22305
.
40.
Nolte
,
C.
,
Momma
,
H.
,
Jacobs
,
Tünnermann
,
A.
,
Chichkov
,
B. N.
,
Wellegehausen
,
B.
, and
Welling
,
H.
,
1997
, “
Ablation of Metals by Ultrashort Laser Pulses
,”
J. Opt. Soc. Am. B
,
14
(
10
), pp.
2716
2722
.
41.
Ancona
,
A.
,
Röser
,
F.
,
Rademaker
,
K.
,
Limpert
,
J.
,
Nolte
,
S.
, and
Tünnermann
,
A.
,
2008
, “
High Speed Laser Drilling of Metals Using a High Repetition Rate, High Average Power Ultrafast Fiber CPA System
,”
Opt. Express
,
16
(
12
), pp.
8958
8968
.
42.
Ancona
,
A.
,
Döring
,
S.
,
Jauregui
,
C.
,
Röser
,
F.
,
Limpert
,
J.
,
Nolte
,
S.
, and
Tünnermann
,
A.
,
2009
, “
Femtosecond and Picosecond Laser Drilling of Metals at High Repetition Rates and Average Powers
,”
Opt. Lett.
,
34
(
21
), pp.
3304
3306
.
43.
Di Noso
,
F.
,
Gaudiuso
,
C.
,
Sibillano
,
T.
,
Mezzapesa
,
F. P.
,
Ancona
,
A.
, and
Lugarà
,
P. M.
,
2014
, “
Role of Heat Accumulation on the Incubation Effect in Multi-Shot Laser Ablation of Stainless Steel at High Repetition Rates
,”
Opt. Express
,
22
(
10
), p.
12200
.
44.
Schille
,
J.
,
2013
, “
Investigation of Micromachining Using a High Repetition Rate Femtosecond Fibre Laser
,” Ph.D. thesis, The University of Manchester, Manchester, UK.
45.
Petkov
,
P.
,
2011
, “
Laser Milling: Surface Integrity, Removal strategies and Process Accuracy
,” Ph.D. thesis, Cardiff University, Cardiff, UK.
46.
Sugioka
,
K.
, and
Cheng
,
Y.
,
2014
, “
Fundamentals of Femtosecond Laser Processing
,”
Femtosecond Laser 3D Micromachining for Microfluidic and Optofluidic Applications
,
Springer
,
New York
, pp.
19
23
.
47.
Reif
,
J.
,
Costache
,
F.
,
Varlamova
,
O.
,
Jia
,
G.
, and
Ratzke
,
M.
,
2009
, “
Self-Organized Regular Surface Patterning by Pulsed Laser Ablation
,”
Phys. Status Solidi C.
,
6
(
3
), pp.
681
686
.
48.
Bonse
,
J.
, and
Kruger
,
J.
,
2010
, “
Pulse Number Dependence of Laser-Induced Periodic Surface Structures for Femtosecond Laser Irradiation of Silicon
,”
J. Appl. Phys.
,
108
(
3
), p.
034903
.
49.
Shang
,
X.
,
Tian
,
Y.
,
Lancaster
,
M.
, and
Singh
,
S.
,
2013
, “
A SU8 Micromachined WR-1.5 Band Waveguide Filter
,”
IEEE Microwave Wireless Compon.
,
23
(
6
), pp.
300
302
.
You do not currently have access to this content.