In an effort to provide insights into the thermochemical composition of a microwave plasma chemical vapor deposition (MPCVD) reactor, the mole fraction of H2 is measured at various positions in the plasma sheath, at pressures of 10 and 30 Torr, and at plasma powers ranging from 300 to 700 W. A technique is developed by comparing the Q(1)01 transition of experimental and theoretical spectra aided by the Sandia CARSFT fitting routine. Results reveal that the mole fraction of H2 does not vary significantly from its theoretical mixture at the parametric conditions examined. Furthermore, the ν=1ν=2 vibrational hot band was searched, but no transitions were found. An analytical explanation for the increase in the temperature of H2 with the introduction of N2 and CH4 is also presented. Finally, because the mole fraction of H2 does not appear to deviate from the theoretical composition, the rotational and translational modes of H2 are shown to be approximately in equilibrium, and therefore, the rotational temperatures may be used to estimate the translational temperatures of H2.

References

References
1.
Bae
,
S.
,
Kim
,
H.
,
Lee
,
Y.
,
Xu
,
X.
,
Park
,
J.-S.
,
Zheng
,
Y.
,
Balakrishnan
,
J.
,
Lei
,
T.
,
Kim
,
H. R.
,
Song
,
Y. I.
,
Kim
,
Y.-J.
,
Kim
,
K. S.
,
Ozyilmaz
,
B.
,
Ahn
,
J.-H.
,
Hong
,
B. H.
, and
Iijima
,
S.
,
2010
, “
Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes
,”
Nat. Nanotechnol.
,
5
(
8
), pp.
574
578
.
2.
Yamada
,
T.
,
Ishihara
,
M.
,
Kim
,
J.
,
Hasegawa
,
M.
, and
Iijima
,
S.
,
2012
, “
A Roll-to-Roll Microwave Plasma Chemical Vapor Deposition Process for the Production of 294 mm Width Graphene Films at Low Temperature
,”
Carbon
,
50
(
7
), pp.
2615
2619
.
3.
Yamada
,
H.
,
Chayahara
,
A.
, and
Mokuno
,
Y.
,
2007
, “
Simplified Description of Microwave Plasma Discharge for Chemical Vapor Deposition of Diamond
,”
J. Appl. Phys.
,
101
(
6
), pp.
1
6
.
4.
Hassouni
,
K.
,
Silva
,
F.
, and
Gicquel
,
A.
,
2010
, “
Modeling of Diamond Deposition Microwave Cavity Generated Plasmas
,”
J. Phys. D: Appl. Phys.
,
43
(
15
), pp.
1
45
.
5.
Butler
,
J. E.
,
Mankelevich
,
Y. A.
,
Cheesman
,
A.
,
Ma
,
J.
, and
Ashfold
,
M. N. R.
,
2009
, “
Understanding the Chemical Vapor Deposition of Diamond: Recent Progress
,”
J. Phys.: Condens. Matter
,
21
(
36
), pp.
1
20
.
6.
Hassouni
,
K.
,
Lombardi
,
G.
,
Gicquel
,
A.
,
Capitelli
,
M.
,
Shakhatov
,
V. A.
, and
De Pascale
,
O.
,
2005
, “
Nonequilibrium Vibrational Excitation of H2 in Radiofrequency Discharges: A Theoretical Approach Based on Coherent Anti-Stokes Raman Spectroscopy Measurements
,”
Phys. Plasmas
,
12
(
7
), p.
073301
.
7.
Petherbridge
,
J. R.
,
May
,
P. W.
, and
Ashfold
,
M. N. R.
,
2001
, “
Modeling of the Gas-Phase Chemistry in CHO Gas Mixtures for Diamond Chemical Vapor Deposition
,”
J. Appl. Phys.
,
89
(
9
), p.
5219
.
8.
Ma
,
J.
,
Cheesman
,
A.
,
Ashfold
,
M. N. R.
,
Hay
,
K. G.
,
Wright
,
S.
,
Langford
,
N.
,
Duxbury
,
G.
, and
Mankelevich
,
Y. A.
,
2009
, “
Quantum Cascade Laser Investigations of CH4 and C2H2 Interconversion in Hydrocarbon/H2 Gas Mixtures During Microwave Plasma Enhanced Chemical Vapor Deposition of Diamond
,”
J. Appl. Phys.
,
106
(
3
), p.
033305
.
9.
Guláš
,
M.
,
Le Normand
,
F.
, and
Veis
,
P.
,
2009
, “
Gas Phase Kinetic and Optical Emission Spectroscopy Studies in Plasma-Enhanced Hot Filament Catalytic CVD Production of Carbon Nanotubes
,”
Appl. Surf. Sci.
,
255
(
10
), pp.
5177
5180
.
10.
Kempkens
,
H.
, and
Uhlenbusch
,
J.
,
2000
, “
Scattering Diagnostics of Low-Temperature Plasmas (Rayleigh Scattering, Thomson Scattering, CARS)
,”
Plasma Sources Sci. Technol.
,
9
(
4
), pp.
492
506
.
11.
Shakhatov
,
V. A.
,
De Pascale
,
O.
, and
Capitelli
,
M.
,
2004
, “
Theoretical and Experimental CARS Rotational Distributions of H in a Radio-Frequency Capacitive Discharge Plasma
,”
Eur. Phys. J. D
,
29
(
2
), pp.
235
245
.
12.
Gicquel
,
A.
,
Derkaoui
,
N.
,
Rond
,
C.
,
Benedic
,
F.
,
Cicala
,
G.
,
Moneger
,
D.
, and
Hassouni
,
K.
,
2012
, “
Quantitative Analysis of Diamond Deposition Reactor Efficiency
,”
Chem. Phys.
,
398
(
1
), pp.
239
247
.
13.
Umemoto
,
H.
,
2010
, “
Production and Detection of H Atoms and Vibrationally Excited H2 Molecules in CVD Processes
,”
Chem. Vapor Deposition
,
16
(
10–12
), pp.
275
290
.
14.
Kimura
,
T.
, and
Kasugai
,
H.
,
2010
, “
Properties of Inductively Coupled rf Ar/H2 Plasmas: Experiment and Global Model
,”
J. Appl. Phys.
,
107
(
8
), p.
083308
.
15.
Garg
,
R. K.
,
Anderson
,
T. N.
,
Lucht
,
R. P.
,
Fisher
,
T. S.
, and
Gore
,
J. P.
,
2008
, “
Gas Temperature Measurements in a Microwave Plasma by Optical Emission Spectroscopy Under Single-Wall Carbon Nanotube Growth Conditions
,”
J. Phys. D: Appl. Phys.
,
41
(
9
), p.
095206
.
16.
Chu
,
H. N.
,
Den Hartog
,
E. A.
,
Lefkow
,
A. R.
,
Jacobs
,
J.
,
Anderson
,
L. W.
,
Lagally
,
M. G.
, and
Lawler
,
J. E.
,
1991
, “
Measurements of the Gas Kinetic Temperature in a CH4–H2 Discharge During the Growth of Diamond
,”
Phys. Rev. A
,
44
(
6
), pp.
3796
3803
.
17.
Lavrov
,
B. P.
,
Pipa
,
A. V.
, and
Röpcke
,
J.
,
2006
, “
On Determination of the Degree of Dissociation of Hydrogen in Non-Equilibrium Plasmas by Means of Emission Spectroscopy: I. The Collision–Radiative Model and Numerical Experiments
,”
Plasma Sources Sci. Technol.
,
15
(
1
), pp.
135
146
.
18.
Lavrov
,
B. P.
,
Lang
,
N.
,
Pipa
,
A. V.
, and
Röpcke
,
J.
,
2006
, “
On Determination of the Degree of Dissociation of Hydrogen in Non-Equilibrium Plasmas by Means of Emission Spectroscopy: II. Experimental Verification
,”
Plasma Sources Sci. Technol.
,
15
(
1
), pp.
147
155
.
19.
Gicquel
,
A.
,
Chenevier
,
M.
,
Breton
,
Y.
,
Petiau
,
M.
,
Booth
,
J. P.
, and
Hassouni
,
K.
,
1996
, “
Ground State and Excited State H-Atom Temperatures in a Microwave Plasma Diamond Deposition Reactor
,”
J. Phys. III
,
6
(
9
), pp.
1167
1180
.
20.
Gicquel
,
A.
,
Hassouni
,
K.
,
Breton
,
Y.
,
Chenevier
,
M.
, and
Cubertafon
,
J.
,
1996
, “
Gas Temperature Measurements by Laser Spectroscopic Techniques and by Optical Emission Spectroscopy
,”
Diamond Relat. Mater.
,
5
(
3–5
), pp.
366
372
.
21.
Tuesta
,
A. D.
,
Bhuiyan
,
A.
,
Lucht
,
R. P.
, and
Fisher
,
T. S.
,
2014
, “
Laser Diagnostics of Plasma in Synthesis of Graphene-Based Materials
,”
J. Micro Nano-Manuf.
,
2
(
3
), p.
031002
.
22.
Biel
,
W.
,
Brose
,
M.
,
David
,
M.
,
Kempkens
,
H.
, and
Uhlenbusch
,
J.
,
1997
, “
Determination of Atomic and Molecular Particle Densities and Temperatures in a Low-Pressure Hydrogen Hollow Cathode Discharge
,”
Plasma Phys. Control. Fusion
,
39
(
5
), pp.
661
681
.
23.
Meulenbroeks
,
R.
,
Engeln
,
R.
,
van der Mullen
,
J. A.
, and
Schram
,
D.
,
1996
, “
Coherent Anti-Stokes Raman Scattering Performed on Expanding Thermal Arc Plasmas
,”
Phys. Rev. E
,
53
(
5
), pp.
5207
5217
.
24.
Scott
,
C. D.
, and
Lefebvreh
,
M.
,
1996
, “
Determining Electron Temperature and Density in a Hydrogen Microwave Plasma
,”
J. Thermophys. Heat Transfer
,
10
(
3
), pp.
426
435
.
25.
Chen
,
K.
,
Chuang
,
M.
,
Penney
,
C. M.
, and
Banholzer
,
W. F.
,
1992
, “
Temperature and Concentration Distribution of H2 and H Atoms in Hot-Filament Chemical-Vapor Deposition of Diamond
,”
J. Appl. Phys.
,
71
(
3
), pp.
1485
1493
.
26.
Hay
,
S. O.
,
Roman
,
W. C.
, and
Colket
,
M. B.
,
1990
, “
CVD Diamond Deposition Processes Investigation: CARS Diagnostics/Modeling
,”
J. Mater. Res.
,
5
(
11
), pp.
2387
2397
.
27.
Pealat
,
M.
,
1981
, “
Measurement of Vibrational Populations in Low-Pressure Hydrogen Plasma by Coherent Anti-Stokes Raman Scattering
,”
J. Appl. Phys.
,
52
(
4
), pp.
2687
2691
.
28.
Gicquel
,
A.
,
Hassouni
,
K.
,
Farhat
,
S.
,
Breton
,
Y.
,
Scott
,
C.
,
Lefebvre
,
M.
, and
Pealat
,
M.
,
1994
, “
Spectroscopic Analysis and Chemical Kinetics Modeling of a Diamond Deposition Plasma Reactor
,”
Diamond Relat. Mater.
,
3
(
4–6
), pp.
581
586
.
29.
Boogaarts
,
M. G. H.
,
Mazouffre
,
S.
,
Brinkman
,
G. J.
,
van der Heijden
,
H. W. P.
,
Vankan
,
P.
,
van der Mullen
,
J. A. M.
,
Schram
,
D. C.
, and
Dobele
,
H. F.
,
2002
, “
Quantitative Two-Photon Laser-Induced Fluorescence Measurements of Atomic Hydrogen Densities, Temperatures, and Velocities in an Expanding Thermal Plasma
,”
Rev. Sci. Instrum.
,
73
(
1
), pp.
73
86
.
30.
Tomasini
,
L.
,
Rousseau
,
A.
,
Gousset
,
G.
, and
Leprince
,
P.
,
1996
, “
Spectroscopic Temperature Measurements in a H2 Microwave Discharge
,”
J. Phys. D: Appl. Phys
,
1006
(
29
), pp.
1006
1013
.
31.
Palmer
, and
Palmer
,
R.
,
1989
, “
The CARSFT Computer Code for Calculating Coherent Anti-Stokes Raman Spectra: User and Programmer Information
,” Sandia National Laboratories Report No. SAND89-8206.
32.
Maschmann
,
M. R.
,
Amama
,
P. B.
,
Goyal
,
A.
,
Iqbal
,
Z.
,
Gat
,
R.
, and
Fisher
,
T. S.
,
2006
, “
Parametric Study of Synthesis Conditions in Plasma-Enhanced CVD of High-Quality Single-Walled Carbon Nanotubes
,”
Carbon
,
44
(
1
), pp.
10
18
.
33.
Tolles
,
W. M.
,
Nibler
,
J. W.
,
McDonald
,
J. R.
, and
Harvey
,
A. B.
,
1977
, “
A Review of the Theory and Application of Coherent Anti-Stokes Raman Spectroscopy (CARS)
,”
Appl. Spectrosc.
,
31
(
4
), pp.
253
271
.
34.
Shakhatov
,
V. A.
,
De Pascale
,
O.
,
Capitelli
,
M.
,
Hassouni
,
K.
,
Lombardi
,
G.
, and
Gicquel
,
A.
,
2005
, “
Measurement of Vibrational, Gas, and Rotational Temperatures of H2 in Radio Frequency Inductive Discharge Plasma by Multiplex Coherent Anti-Stokes Raman Scattering Spectroscopy Technique
,”
Phys. Plasmas
,
12
(
2
), pp.
1
10
.
35.
Lucht
,
R. P.
, and
Farrow
,
R. L.
,
1989
, “
Saturation Effects in Coherent Anti-Stokes Raman Scattering Spectroscopy of Hydrogen
,”
J. Opt. Soc. Am. B
,
6
(
12
), p.
2313
.
36.
Kaminski
,
C.
, and
Ewart
,
P.
,
1996
, “
Multiplex H2 CARS Thermometry in a Microwave Assisted Diamond CVD Plasma
,”
Appl. Phys. B
,
64
(
1
), pp.
103
109
.
37.
Meichsner
,
J.
,
Schmidt
,
M.
,
Schneider
,
R.
, and
Wagner
,
H.-E.
, eds.,
2013
,
Nonthermal Plasma Chemistry and Physics
,
Taylor and Francis Group
,
Boca Raton, FL
.
38.
Raizer
,
Y. P.
,
Allen
,
J. E.
, and
Kisin
,
V. I.
,
1992
,
Gas Discharge Physics
,
2nd ed.
,
Nauka
, Originally published in Moscow in 1987.
You do not currently have access to this content.