Nanosecond laser machining of titanium has gained increased interest in recent years for a number of potential applications where part functionalities depend on features or surface structures with microscale dimensions. In particular, titanium is one of the materials of choice to sustain the demand for advanced and miniaturized components in the biomedical and aerospace sectors for instance. This is due to its inherent properties of high strength-to-weight ratio, corrosion resistance, and biocompatibility. However, in the nanosecond laser processing regime, the resolidification and deposition of material expelled from the generated craters can be detrimental to the achieved machined quality at such small scale. Thus, this paper focuses on the investigation of the laser–material interaction process in this pulse length regime as a function of both the delivered laser beam energy and the pulse duration in order to optimize machining quality and throughput. To achieve this, a simple theoretical model for simulating single pulse processing was developed and validated first. The model was then used to relate (1) the temperature evolution inside commercially pure titanium targets with (2) the morphology of the obtained craters. Using a single fiber laser system with a wavelength of 1064 nm, this analysis was conducted for pulse durations comprised between 25 ns and 220 ns and a range of fluence values from 14 J cm−2 and 56 J cm−2. One of the main conclusions from the study is that the generation of relatively clean single craters could be best achieved with a pulse length in the range of 85–140 ns when the delivered fluence leads to the maximum crater temperature being above but still relatively close to the vaporization threshold of the cpTi substrate. In addition, the lowest surface roughness in the case of laser milling operations could be obtained when the delivered single pulses did not lead to the vaporization threshold being reached.

References

References
1.
Boyer
,
R. R.
,
1996
, “
An Overview on the Use of Titanium in the Aerospace Industry
,”
Mater. Sci. Eng., A
,
213
(
1
), pp.
103
114
.
2.
Brunette
,
D. M.
,
Tengvall
,
P.
,
Textor
,
M.
, and
Thomsen
,
P.
,
2001
,
Titanium in Medicine: Material Science, Surface Science, Engineering, Biological Responses, and Medical Applications
,
Springer
,
New York
, Chap. 1.
3.
Fasasi
,
A. Y.
,
Mwenifumbo
,
S.
,
Rahbar
,
N.
,
Chen
,
J.
,
Li
,
M.
,
Beye
,
A. C.
,
Arnold
,
C. B.
, and
Soboyejo
,
W. O.
,
2009
, “
Nano-Second UV Laser Processed Micro-Grooves on Ti6Al4V for Biomedical Applications
,”
Mater. Sci. Eng., C
,
29
(
1
), pp.
5
13
.
4.
Jain
,
V. K.
,
Sidpara
,
A.
,
Balasubramaniam
,
R.
,
Lodha
,
G. S.
,
Dhamgaye
,
V. P.
, and
Shukla
,
R.
,
2014
, “
Micromanufacturing: A Review—Part I
,”
Proc. Inst. Mech. Eng., Part B
,
228
(
9
), pp.
973
994
.
5.
Honda
,
R.
,
Mizutani
,
M.
,
Ohmori
,
H.
, and
Komotori
,
J.
,
2012
, “
Biocompatibility Evaluation of Nanosecond Laser Treated Titanium Surfaces
,”
Int. J. Mod. Phys.: Conf. Ser.
,
6
, pp.
682
687
.
6.
Brånemark
,
R.
,
Emanuelsson
,
L.
,
Palmquist
,
A.
, and
Thomsen
,
P.
,
2011
, “
Bone Response to Laser-Induced Micro- and Nano-Size Titanium Surface Features
,”
Nanomed.: Nanotechnol., Biol. Med.
,
7
(
2
), pp.
220
227
.
7.
Rusu
,
S.
,
Buzaianu
,
A.
,
Ionel
,
L.
,
Ursescu
,
D.
, and
Galusca
,
D. G.
,
2012
, “
Titanium Alloy Nanosecond vs. Femtosecond Laser Marking
,”
Appl. Surf. Sci.
,
259
, pp.
311
319
.
8.
Ripoll
,
M. R.
,
Simic
,
R.
,
Brenner
,
J.
, and
Podgornik
,
B.
,
2013
, “
Friction and Lifetime of Laser Surface-Textured and MoS2-Coated Ti6Al4V Under Dry Reciprocating Sliding
,”
Tribol. Lett.
,
51
(
2
), pp.
261
271
.
9.
Lin
,
Y.
,
Gupta
,
M. C.
,
Taylor
,
R. E.
,
Lei
,
C.
,
Stone
,
W.
,
Spidel
,
T.
,
Yu
,
M.
, and
Williams
,
R.
,
2009
, “
Nanosecond Pulsed Laser Micromachining for Experimental Fatigue Life Study of Ti-3Al-2.5V Tubes
,”
Opt. Lasers Eng.
,
47
(
1
), pp.
118
122
.
10.
Stephen
,
A.
,
Schrauf
,
G.
,
Mehrafsun
,
S.
, and
Vollertsen
,
F.
,
2014
, “
High Speed Laser Micro Drilling for Aerospace Applications
,”
Procedia CIRP
,
24
, pp.
130
133
.
11.
Pramanik
,
A.
,
2014
, “
Problems and Solutions in Machining of Titanium Alloys
,”
Int. J. Adv. Manuf. Technol.
,
70
(
5–8
), pp.
919
928
.
12.
Biffi
,
C. A.
, and
Previtali
,
B.
,
2013
, “
Spatter Reduction in Nanosecond Fibre Laser Drilling Using an Innovative Nozzle
,”
Int. J. Adv. Manuf. Technol.
,
66
(
9–12
), pp.
1231
1245
.
13.
Tangwarodomnukun
,
V.
,
Likhitangsuwat
,
P.
,
Tevinpibanphan
,
O.
, and
Dumkum
,
C.
,
2015
, “
Laser Ablation of Titanium Alloy Under a Thin and Flowing Water Layer
,”
Int. J. Mach. Tools Manuf.
,
89
, pp.
14
28
.
14.
Yilbas
,
B. S.
,
1997
, “
Parametric Study to Improve Laser Hole Drilling Process
,”
J. Mater. Process. Technol.
,
70
(
1–3
), pp.
264
273
.
15.
Grigoropoulos
,
C. P.
,
Park
,
H. K.
, and
Xu
,
X.
,
1993
, “
Modeling of Pulsed Laser Irradiation of Thin Silicon Layers
,”
Int. J. Heat Mass Transfer
,
36
(
4
), pp.
919
924
.
16.
Hitz
,
C. B.
,
Ewing
,
J. J.
, and
Hetch
,
J.
,
2012
,
Introduction to Laser Technology
,
Wiley
,
Hoboken, NJ
, Chap. 9.
17.
Fachinotti
,
V. D.
,
Cardona
,
A.
, and
Huespe
,
A. E.
,
1999
, “
A Fast Convergent and Accurate Temperature Model for Phase-Change Heat Conduction
,”
Int. J. Numer. Methods Eng.
,
44
(
12
), pp.
1863
1884
.
18.
Abderrazak
,
K.
,
Kriaa
,
W.
,
Ben Salem
,
W.
,
Mhiri
,
H.
,
Lepalec
,
G.
, and
Autric
,
M.
,
2009
, “
Numerical and Experimental Studies of Molten Pool Formation During an Interaction of a Pulse Laser (Nd:YAG) With a Magnesium Alloy
,”
Opt. Laser Technol.
,
41
(
4
), pp.
470
480
.
19.
Welsch
,
G.
,
Boyer
,
R.
, and
Collings
,
E. W.
,
1994
,
Materials Properties Handbook: Titanium Alloys
,
ASM International
,
Novelty, OH
, Chap. 2.
20.
Li
,
K.
,
Sparkes
,
M.
, and
O'Neill
,
W.
,
2014
, “
Comparison Between Single Shot Micromachining of Silicon With Nanosecond Pulse Shaped IR Fiber Laser and DPSS UV Laser
,”
IEEE J. Sel. Top. Quantum Electron.
,
20
(
5
), p.
0900807
.
21.
Amoruso
,
S.
,
Bruzzese
,
R.
,
Spinelli
,
N.
, and
Velotta
,
R.
,
1999
, “
Characterization of Laser-Ablation Plasmas
,”
J. Phys. B: At., Mol. Opt. Phys.
,
32
(
14
), pp.
R131
R172
.
22.
Voisey
,
K. T.
,
Kudesia
,
S. S.
,
Rodden
,
W. S. O.
,
Hand
,
D. P.
,
Jones
,
J. D. C.
, and
Clyne
,
J. W.
,
2003
, “
Melt Ejection During Laser Drilling of Metals
,”
Mater. Sci. Eng., A
,
356
(
1–2
), pp.
414
424
.
You do not currently have access to this content.