In electrodischarge machining (EDM), the thermal energy causing material removal at the electrodes is given by the electrical energy supplied to the discharge. This electrical energy, also known as the discharge energy, can be obtained from time-transient voltage and current waveforms across the electrodes during a discharge. However, in micro-EDM, the interelectrode gaps are shorter causing the plasma resistance to be significantly smaller than other impedances in the circuit. As a result, the voltage and current waveforms obtained by a direct measurement may include voltage drop across the stray impedances in the circuit and may not accurately represent the exact voltage drop across micro-EDM plasma alone. Therefore, a model-based approach is presented in this paper to predict time-transient electrical characteristics of a micro-EDM discharge, such as plasma resistance, voltage, current, and discharge energy. A global modeling approach is employed to solve equations of mass and energy conservations, dynamics of the plasma growth, and the plasma current equation for obtaining a complete temporal description of the plasma during the discharge duration. The model is validated against single-discharge micro-EDM experiments and then used to study the effect of applied open gap voltage and interelectrode gap distance on the plasma resistance, voltage, current, and discharge energy. For open gap voltage in the range of 100–300 V and gap distance in the range of 0.5–6 μm, the model predicts the use of a higher open gap voltage and a higher gap distance to achieve a higher discharge energy.

References

References
1.
Kimoto
,
Y.
,
1962
, “
Study on Erosion Mechanism of Electrical Discharge Machining
,”
J. Inst. Electr. Eng. Jpn
,
82
(
883
), pp.
530
536
.
2.
de Bryun
,
H. E.
,
1968
, “
Slope Control—Great Improvement in Spark Erosion
,”
Ann. CIRP
,
16
(
2
), pp.
183
191
.
3.
Taniguchi
,
N.
,
Konoshita
,
N.
, and
Fukui
,
M.
,
1971
, “
The Optimum Form of the Current Impulse in Electric Discharge Machining
,”
Ann. CIRP
,
20
(
1
), pp.
41
42
.
4.
Erden
,
A.
, and
Kaftanoglu
,
B.
,
1981
, “
Thermo-Mathematical Modeling and Optimization of Energy Pulse Forms in Electric Discharge Machining (EDM)
,”
Int. J. Mach. Tool Des. Res.
,
21
(
1
), pp.
11
22
.
5.
Rajurkar
,
K.
,
1990
, “
Real-Time Stochastic Model and Control of EDM
,”
CIRP Ann. Manuf. Technol.
,
39
(
1
), pp.
187
190
.
6.
Kunieda
,
M.
,
Lauwers
,
B.
,
Rajurkar
,
K.
, and
Schumacher
,
B.
,
2005
, “
Advancing EDM Through Fundamental Insight Into the Process
,”
CIRP Ann. Manuf. Technol.
,
54
(
2
), pp.
64
87
.
7.
Yeo
,
S. H.
,
Aligiri
,
E.
,
Tan
,
P. C.
, and
Zarepour
,
H.
,
2009
, “
A New Pulse Discriminating System for Micro-EDM
,”
Mater. Manuf. Processes
,
24
(
12
), pp.
1297
1305
.
8.
Timoshkin
,
I. V.
,
Fouracre
,
R. A.
,
Given
,
M. J.
, and
MacGregor
,
S. J.
,
2006
, “
Hydrodynamic Modelling of Transient Cavities in Fluids Generated by High Voltage Spark Discharges
,”
J. Phys. D: Appl. Phys.
,
39
(
22
), pp.
4808
4817
.
9.
Lubicki
,
P.
,
Cross
,
J. D.
,
Jayaram
,
S.
,
Staron
,
J.
, and
Mazurek
,
B.
,
1996
, “
Effect of Water Conductivity on Its Pulse Electric Strength
,”
IEEE
International Symposium on Electrical Insulation
, Montreal, Canada, June 16–19, Vol.
2
, pp.
882
886
.
10.
Lan
,
S.
,
Yang
,
J.
,
Samee
,
A.
,
Jiang
,
J.
, and
Zhou
,
Z.
,
2009
, “
Numerical Simulation of Properties of Charged Particles Initiated by Underwater Pulsed Discharge
,”
Plasma Sci. Technol.
,
11
(
4
), pp.
481
486
.
11.
Lei
,
K.
,
Li
,
N.
,
Huang
,
H.
,
Huang
,
J.
, and
Qu
,
J.
,
2011
, “
The Characteristics of Underwater Plasma Discharge Channel and Its Discharge Circuit
,”
Advanced Electrical and Electronics Engineering
(Lecture Notes in Electrical Engineering), Vol.
87
,
Springer
, Berlin, Heidelberg, pp.
619
626
.
12.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2014
, “
A Model of Micro Electro-Discharge Machining Plasma Discharge in Deionized Water
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
031011
.
13.
Lieberman
,
M. A.
, and
Lichtenberg
,
A. J.
,
2005
,
Principles of Plasma Discharges and Material Processing
,
Wiley
,
New York
.
15.
Wong
,
Y.
,
Rahman
,
M.
,
Lim
,
H.
,
Han
,
H.
, and
Ravi
,
N.
,
2003
, “
Investigation of Micro-EDM Material Removal Characteristics Using Single RC-Pulse Discharges
,”
J. Mater. Process. Technol.
,
140
(
1–3
), pp.
303
307
.
16.
Bragança
,
I. M. F.
,
Rosa
,
P. A. R.
,
Dias
,
F. M.
,
Martins
,
P. A. F.
, and
Alves
,
L. L.
,
2013
, “
Experimental Study of Micro Electrical Discharge Machining Discharges
,”
J. Appl. Phys.
,
113
(
23
), p.
233301
.
17.
Kojima
,
A.
,
Natsu
,
W.
, and
Kunieda
,
M.
,
2008
, “
Spectroscopic Measurement of Arc Plasma Diameter in EDM
,”
CIRP Ann. Manuf. Technol.
,
57
(
1
), pp.
203
207
.
18.
Heinz
,
K.
,
2010
, “
Fundamental Study of Magnetic Field-Assisted Micro-EDM for Non-Magnetic Materials
,” M.S. thesis, University of Illinois at Urbana-Champaign, Champaign, IL.
19.
Gostimirovic
,
M.
,
Kovac
,
P.
,
Sekulic
,
M.
, and
Skoric
,
B.
,
2012
, “
Influence of Discharge Energy on Machining Characteristics in EDM
,”
J. Mech. Sci. Technol.
,
26
(
1
), pp.
173
179
.
20.
Daneshmand
,
S.
, and
Kahrizi
,
E.
,
2013
, “
Influence of Machining Parameters on Electro Discharge Machining of NiTi Shape Memory Alloys
,”
Int. J. Electrochem. Sci.
,
8
(
3
), pp.
3095
3104
.
21.
Kiyak
,
M.
,
Aldemir
,
B. E.
, and
Altan
,
E.
,
2015
, “
Effects of Discharge Energy Density on Wear Rate and Surface Roughness in EDM
,”
Int. J. Adv. Manuf. Technol.
,
79
(
1
), pp.
513
518
.
22.
Jahan
,
M. P.
,
Ali Asad
,
A. B. M.
,
Rahman
,
M.
,
Wong
,
Y. S.
, and
Masaki
,
T.
,
2011
, “
Micro-Electro Discharge Machining
,”
Micro-Manufacturing: Design and Manufacturing of Micro-Products
, 1st ed., M. Koc and T. Ozel, eds., Wiley, Hoboken, NJ, pp.
301
346
.
23.
Tao
,
J.
,
Ni
,
J.
, and
Shih
,
A. J.
,
2012
, “
Modeling of the Anode Crater Formation in Electrical Discharge Machining
,”
ASME J. Manuf. Sci. Eng.
,
134
(
1
), p.
011002
.
24.
Yeo
,
S. H.
,
Kurnia
,
W.
, and
Tan
,
P. C.
,
2007
, “
Electro-Thermal Modelling of Anode and Cathode in Micro-EDM
,”
J. Phys. D: Appl. Phys.
,
40
(
8
), pp.
2513
2521
.
25.
Yeo
,
S. H.
,
Kurnia
,
W.
, and
Tan
,
P. C.
,
2008
, “
Critical Assessment and Numerical Comparison of Electro-Thermal Models in EDM
,”
J. Mater. Process. Technol.
,
203
(
1–3
), pp.
241
251
.
26.
Joshi
,
S.
, and
Pande
,
S.
,
2010
, “
Thermo-Physical Modeling of Die-Sinking EDM Process
,”
J. Manuf. Processes
,
12
(
1
), pp.
45
56
.
27.
Mujumdar
,
S. S.
,
Curreli
,
D.
,
Kapoor
,
S. G.
, and
Ruzic
,
D.
,
2015
, “
Modeling of Melt-Pool Formation and Material Removal in Micro-Electrodischarge Machining
,”
ASME J. Manuf. Sci. Eng.
,
137
(
3
), p.
031007
.
You do not currently have access to this content.