Kinetic Monte Carlo (KMC) is regarded as an efficient tool for rare event simulation and has been applied in simulating bottom–up self-assembly processes of nanomanufacturing. Yet it has limitations to simulate top–down processes. In this paper, a new and generalized KMC mechanism, called controlled KMC or controlled KMC (cKMC), is proposed to simulate complete physical and chemical processes. This generalization is enabled by the introduction of controlled events. In contrast to the traditional self-assembly events in KMC, controlled events occur at certain times, locations, or directions, which allows all events to be modeled. A formal model of cKMC is also presented to show the generalization. The applications of cKMC to several top–down and bottom–up processes are demonstrated.

References

References
1.
Lyons
,
K. W.
,
2007
, “
Integration, Interoperability, and Information Management: What are the Key Issues for Nanomanufacturing?
,”
Proc. SPIE
,
6648
, p.
66480D
.
2.
Xia
,
Y.
,
Rogers
,
J. A.
,
Paul
,
K. E.
, and
Whitesides
,
G. M.
,
1999
, “
Unconventional Methods for Fabricating and Patterning Nanostructures
,”
Chem. Rev
,
99
(
7
), pp.
1823
1848
.
3.
Busnaina
,
A.
, ed.,
2006
,
Nanomanufacturing Handbook
,
CRC Press
,
Boca Raton
.
4.
Tseng
,
A. A.
, ed.,
2008
,
Nanofabrication: Fundamentals and Applications
,
World Scientific Publishing
,
Singapore
.
5.
Komanduri
,
R.
, and
Raff
,
L. M.
,
2001
, “
A Review on the Molecular Dynamics Simulation of Machining at the Atomic Scale
,”
Proc. Inst. Mech. Eng., Part B
,
215
(
12
), pp.
1639
1672
.
6.
Fang
,
T.-H.
,
Weng
,
C.-I.
, and
Chang
,
J.-G.
,
2002
, “
Molecular Dynamics Simulation of Nano-Lithography Process Using Atomic Force Microscopy
,”
Surf. Sci.
,
501
(
1
), pp.
138
147
.
7.
Jun
,
S.
,
Lee
,
Y.
,
Kim
,
S. Y.
, and
Im
,
S.
,
2004
, “
Large-Scale Molecular Dynamics Simulations of Al(111) Nanoscratching
,”
Nanotechnology
,
15
(
9
), pp.
1169
1174
.
8.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
1998
, “
Effect of Tool Geometry in Nanometric Cutting: A Molecular Dynamics Simulation Approach
,”
Wear
,
219
(
1
), pp.
84
97
.
9.
Komanduri
,
R.
,
Chandrasekaran
,
N.
, and
Raff
,
L. M.
,
2001
, “
Molecular Dynamics Simulation of the Nanometric Cutting of Silicon
,”
Philos. Mag. B
,
81
(
12
), pp.
1989
2019
.
10.
Yang
,
Y.
,
Chen
,
S.
,
Cheng
,
K.
, and
Sun
,
X.
,
2007
, “
Diamond Turning of Microstructured Surfaces: Modeling and Simulation
,”
Int. J. Nanomanuf.
,
1
(
5
), pp.
627
640
.
11.
Han
,
X.
,
2007
, “
Study Micromechanism of Surface Planarization in the Polishing Technology Using Numerical Simulation Method
,”
Appl. Surf. Sci.
,
253
(
14
), pp.
6211
6216
.
12.
Shimada
,
S.
,
Ikawa
,
N.
,
Inamura
,
T.
,
Takezawa
,
N.
,
Ohmori
,
H.
, and
Sata
,
T.
,
1995
, “
Brittle-Ductile Transition Phenomena in Microindentation and Micromachining
,”
CIRP Ann. Manuf. Technol.
,
44
(
1
), pp.
523
526
.
13.
Stavropoulos
,
P.
, and
Chryssolouris
,
G.
,
2007
, “
Molecular Dynamics Simulations of Laser Ablation: The Morse Potential Function Approach
,”
Int. J. Nanomanuf.
,
1
(
6
), pp.
736
750
.
14.
Wang
,
N.
,
Rokhlin
,
S. I.
, and
Farson
,
D. F.
,
2007
, “
Nanoparticle Coalescence and Sintering: Molecular Dynamics Simulation
,”
Int. J. Nanomanuf.
,
1
(
6
), pp.
810
824
.
15.
Voter
,
A. F.
,
1998
, “
Parallel Replica Method for Dynamics of Infrequent Events
,”
Phys. Rev. B
,
57
(
22
), pp.
R13985
R13988
.
16.
Voter
,
A. F.
,
1997
, “
Hyperdynamics: Accelerated Molecular Dynamics of Infrequent Events
,”
Phys. Rev. Lett.
,
78
(
20
), pp.
3908
3911
.
17.
Sørensen
,
M. R.
, and
Voter
,
A. F.
,
2000
, “
Temperature-Accelerated Dynamics for Simulation of Infrequent Events
,”
J. Chem. Phys.
,
112
(
21
), pp.
9599
9606
.
18.
Chatterjee
,
A.
, and
Vlachos
,
D. G.
,
2007
, “
An Overview of Spatial Microscopic and Accelerated Kinetic Monte Carlo Methods
,”
J. Comp. Aided Mat. Des.
,
14
(
2
), pp.
253
308
.
19.
Lasrado
,
V.
,
Alhat
,
D.
, and
Wang
,
Y.
,
2008
, “
A Review of Recent Phase Transition Simulation Methods: Transition Path Search
,”
ASME
Paper No. DETC2008-49410.
20.
Alhat
,
D.
,
Lasrado
,
V.
, and
Wang
,
Y.
,
2008
, “
A Review of Recent Phase Transition Simulation Methods: Saddle Point Search
,”
ASME
Paper No. DETC2008-49411.
21.
Gillespie
,
D. T.
,
1976
, “
A General Method for Numerically Simulating the Stochastic Evolution of Coupled Chemical Reactions
,”
J. Comput. Phys.
,
22
(
4
), pp.
403
434
.
22.
Maksym
,
P. A.
,
1988
, “
Fast Monte Carlo Simulation of MBE Growth
,”
Semicond. Sci. Technol.
,
3
(
6
), pp.
594
596
.
23.
Blue
,
J. L.
,
Beichl
,
I.
, and
Sullivan
,
F.
,
1995
, “
Faster Monte Carlo Simulations
,”
Phys. Rev. E
,
51
(
2
), pp.
R867
R868
.
24.
Schulze
,
T. P.
,
2008
, “
Efficient Kinetic Monte Carlo Simulation
,”
J. Comput. Phys.
,
227
(
4
), pp.
2455
2462
.
25.
Wang
,
Y.
,
2013
, “
Reliable Kinetic Monte Carlo Simulation Based on Random Set Sampling
,”
Soft Comput.
,
17
(
8
), pp.
1439
1451
.
26.
Yang
,
Y. G.
,
Johnson
,
R. A.
, and
Wadley
,
H. N. G.
,
1997
, “
A Monte Carlo Simulation of the Physical Vapor Deposition of Nickel
,”
Acta Mater.
,
45
(
4
), pp.
1455
1468
.
27.
Huang
,
H.
,
Gilmer
,
G. H.
, and
Diaz de la Rubia
,
T.
,
1998
, “
An Atomistic Simulator for Thin Film Deposition in Three Dimensions
,”
J. Appl. Phys.
,
84
(
7
), pp.
3636
3649
.
28.
Yang
,
Y. G.
,
Zhou
,
X. W.
,
Johnson
,
R. A.
, and
Wadley
,
H. N. G.
,
2001
, “
Monte Carlo Simulation of Hyperthermal Physical Vapor Deposition
,”
Acta Mat.
,
49
(
16
), pp.
3321
3332
.
29.
Wang
,
L.
, and
Clancy
,
P.
,
2001
, “
Kinetic Monte Carlo Simulation of the Growth of Polycrystalline Cu Films
,”
Surf. Sci.
,
473
(
1–2
), pp.
25
38
.
30.
Dalla Torre
,
J.
,
Bilmer
,
G. H.
,
Windt
,
D. L.
,
Kalyanaraman
,
R.
,
Baumann
,
F. H.
,
O'Sullivan
,
P. L.
,
Sapjeta
,
J.
,
Diaz de la Rubia
,
T.
, and
Djafari Rouhani
,
M.
,
2003
, “
Microstructure of Thin Tantalum Films Sputtered Onto Inclined Substrates: Experiments and Atomistic Simulations
,”
J. Appl. Phys.
,
94
(
1
), pp.
263
271
.
31.
Battaile
,
C. C.
,
Srolovitz
,
D. J.
, and
Butler
,
J. E.
,
1997
, “
A Kinetic Monte Carlo Method for the Atomic-Scale Simulation of Chemical Vapor Deposition: Application to Diamond
,”
J. Appl. Phys.
,
82
(
12
), pp.
6293
6300
.
32.
Battaile
,
C. C.
, and
Srolovitz
,
D. J.
,
2002
, “
Kinetic Monte Carlo Simulation of Chemical Vapor Deposition
,”
Annu. Rev. Mater. Res.
,
32
(
1
), pp.
297
319
.
33.
Grujicic
,
M.
, and
Lai
,
S. G.
,
1999
, “
Atomistic Simulation of Chemical Vapor Deposition of (111)-Oriented Diamond Film Using a Kinetic Monte Carlo Method
,”
J. Mater. Sci.
,
34
(
1
), pp.
7
20
.
34.
Kalke
,
M.
, and
Baxter
,
D. V.
,
2001
, “
A Kinetic Monte Carlo Simulation of Chemical Vapor Deposition: Non-Monotonic Variation of Surface Roughness With Growth Temperature
,”
Surf. Sci.
,
477
(
2
), pp.
95
101
.
35.
Flidr
,
J.
,
Huang
,
Y.-C.
,
Newton
,
T. A.
, and
Hines
,
M. A.
,
1998
, “
Extracting Site-Specific Reaction Rates From Steady State Surface Morphologies: Kinetic Monte Carlo Simulations of Aqueous Si(111) Etching
,”
J. Chem. Phys.
,
108
(
13
), pp.
5542
5553
.
36.
Netto
,
A.
, and
Frenklach
,
M.
,
2005
, “
Kinetic Monte Carlo Simulations of CVD Diamond Growth—Interlay Among Growth, Etching, and Migration
,”
Diamond Relat. Mater.
,
14
(
10
), pp.
1630
1646
.
37.
Zhou
,
H.
,
Fu
,
J.
, and
Silver
,
R. M.
,
2007
, “
Time-Resolved Kinematic Monte-Carlo Simulation Study on Si(111) Etching
,”
J. Phys. Chem.
,
111
(
9
), pp.
3566
3574
.
38.
Battaile
,
C. C.
,
Srolovitz
,
D. J.
,
Oleinik
,
I. I.
,
Pettifor
,
D. G.
,
Sutton
,
A. P.
,
Harris
,
S. J.
, and
Butler
,
J. E.
,
1999
, “
Etching Effects During the Chemical Vapor Deposition of (100) Diamond
,”
J. Chem. Phys.
,
111
(
9
), pp.
4291
4299
.
39.
Kratzer
,
P.
, and
Scheffler
,
M.
,
2002
, “
Reaction-Limited Island Nucleation in Molecular Beam Epitaxy of Compound Semiconductors
,”
Phys. Rev. Lett.
,
88
(
3
), p.
036102
(1-4).
40.
Mei
,
D.
,
Ge
,
Q.
,
Neurock
,
M.
,
Kieken
,
L.
, and
Lerou
,
J.
,
2004
, “
First-Principles-Based Kinetic Monte Carlo Simulation of Nitric Oxide Decomposition Over Pt and Rh Surfaces Under Lean-Burn Conditions
,”
Mole. Phys.
,
102
(
4
), pp.
361
369
.
41.
Stumpf
,
R.
, and
Scheffler
,
M.
,
1994
, “
Theory of Self-Diffusion at and Growth of Al(111)
,”
Phys. Rev. Lett.
,
72
(
2
), pp.
254
257
.
42.
Bogicevic
,
A.
,
Hyldgaard
,
P.
,
Wahnström
,
G.
, and
Lundqvist
,
B. I.
,
1998
, “
Al Dimmer Dynamics on Al(111)
,”
Phys. Rev. Lett.
,
81
(
1
), pp.
172
175
.
43.
Prasad
,
M.
,
Conforti
,
P. F.
,
Garrison
,
B. J.
, and
Yingling
,
Y. G.
,
2007
, “
Computational Investigation Into the Mechanisms of UV Ablation of Poly(methyl methacrylate)
,”
Appl. Surf. Sci.
,
253
(
15
), pp.
6382
6385
.
44.
Plimpton
,
S.
,
Thompson
,
A.
, and
Slepoy
,
A.
, SPPARKS Kinetic Monte Carlo Simulator. http://spparks.sandia.gov/
45.
Chou
,
S. Y.
,
Krauss
,
P. R.
, and
Renstrom
,
P. J.
,
1996
, “
Nanoimprint Lithography
,”
J. Vac. Sci. Technol. B
,
14
(
6
), pp.
4129
4133
.
46.
Zankovych
,
S.
,
Hoffmann
,
T.
,
Seekamp
,
J.
,
Bruch
,
J.-U.
, and
Sotomayor Torres
,
C. M.
,
2001
, “
Nanoimprint Lightography: Challenges and Prospects
,”
Nanotechnology
,
12
(
2
), pp.
91
95
.
You do not currently have access to this content.