A new three-dimensional (3D) printing process designated as shockwave-induced freeform technique (SWIFT) is explored for fabricating microparts from nanopowders. SWIFT consists of generating shockwaves using a laser beam, applying these shocks to pressure sinter nanoparticles at room temperature, and creating structures and devices by the traditional layer-by-layer formation. Shockwave cold compaction of nanoscale powders has the capability to overcome limitations, such as shrinkage, porosity, rough surface, and wide tolerance, normally encountered in hot sintering processes, such as selective laser sintering. In this study, the window of operating parameters and the underlying physics of SWIFT were investigated using a high-energy Q-switched Nd: YAG laser and nanodiamond (ND) powders. Results indicate the potential of SWIFT for fabricating high-performance diamond microtools with high aspect ratios, smooth surfaces, and sharp edges. The drawback is that the SWIFT process does not work for micro-sized powders.

References

References
1.
Isaza
,
J. F.
, and
Aumund-Kopp
,
P. C.
,
2014
, “
Additive Manufacturing With Metal Powders: Design for Manufacture Evolves Into Design for Function
,”
Powder Metall. Rev.
,
3
(
2
), pp.
41
50
.
2.
Kumar
,
S.
,
2003
, “
Selective Laser Sintering: A Qualitative and Objective Approach
,”
J. Met.
,
55
(
10
), pp.
43
47
.
3.
Regenfuss
,
P.
,
Streek
,
A.
,
Hartwig
,
L.
,
Klotzer
,
S.
,
Brabant
,
T.
,
Horn
,
M.
,
Ebert
,
R.
, and
Exner
,
H.
,
2007
, “
Principles of Laser Microsintering
,”
Rapid Prototyping J.
,
13
(
4
), pp.
204
212
.
4.
Exner
,
H.
,
Horn
,
M.
,
Streek
,
A.
,
Ullmann
,
F.
,
Hartwig
,
L.
,
Regenfuss
,
P.
, and
Ebert
,
R.
,
2008
, “
Laser Micro Sintering: A New Method to Generate Metal and Ceramic Parts of High Resolution With Sub-Micrometer Powder
,”
Virtual Phys. Prototyping
,
3
(
1
), pp.
3
11
.
5.
Simchi
,
A.
,
2004
, “
The Role of Particle Size on the Laser Sintering of Iron Powder
,”
Metall. Mater. Trans. B
,
35
(
5
), pp.
937
947
.
6.
Hu
,
J.
,
Chou
,
Y. K.
,
Thompson
,
R. G.
,
Burgess
,
J.
, and
Street
,
S.
,
2007
, “
Characterizations of Nano-Crystalline Diamond Coated Cutting Tools
,”
Surf. Coat. Technol.
,
202
(
4–7
), pp.
1113
1117
.
7.
Williams
,
O. A.
, and
Nesladek
,
M.
,
2006
, “
Growth and Properties of Nanocrystalline Diamond Films
,”
Phys. Status Solidi A
,
203
(
13
), pp.
3375
3386
.
8.
Jiang
,
W.
,
Nair
,
R.
, and
Molian
,
P.
,
2005
, “
Functionally Graded Mold Inserts by Laser-Based Flexible Fabrication: Processing, Modeling, Structural Analysis, and Performance Evaluation
,”
J. Mater. Proc. Technol.
,
166
(
2
), pp.
286
293
.
9.
Nair
,
R.
,
Jiang
,
W.
, and
Molian
,
P.
,
2004
, “
Nanoparticle Additive Manufacturing of Ni/H13 Steel Injection Molds
,”
ASME J. Manuf. Sci. Eng.
,
126
(
3
), pp.
637
639
.
10.
Jiang
,
W.
,
Stock
,
M.
, and
Molian
,
P.
,
2002
, “
Production of Aluminum Extrusion Dies Using a Laser-Based Flexible Fabrication Technique
,”
Society of Manufacturing Engineers, Dearborn, MI, Technical Paper No. MF02-132
, pp.
17
24
.
11.
Jiang
,
W.
, and
Molian
,
P.
,
2002
, “
Laser Based Flexible Fabrication of Functionally Graded Dies and Mold Inserts
,”
Int. J. Adv. Manuf. Technol.
,
19
(
9
), pp.
646
654
.
12.
Jiang
,
W.
, and
Molian
,
P.
,
2007
, “
Nanocrystalline TiC Alloying and Glazing of Die-Casting Dies Using a CO2 Laser for Improved Life and Performance
,”
Surf. Coat. Technol.
,
135
(
2–3
), pp.
139
149
.
13.
Engstrom
,
D. S.
,
Porter
,
B.
,
Pacios
,
M.
, and
Bhaskaran
,
H.
,
2014
, “
Additive Nanomanufacturing—A Review
,”
J. Mater. Res.
,
29
(
17
), pp.
1
25
.
14.
Thadhani
,
N.
,
1988
, “
Shock Compression Processing of Powders
,”
Mater. Manuf. Proc.
,
3
(
4
), pp.
493
549
.
15.
Vreeland
,
T.
, Jr.
,
Kasiraj
,
P.
,
Ahrens
,
T.
, and
Schwarz
,
R.
,
1983
, “
Shock Consolidation of Powders—Theory and Experiment
,”
MRS
Proceedings, Vol. 28.
16.
Akashi
,
T.
, and
Sawaoka
,
A.
,
1987
, “
Shock Consolidation of Diamond Powders
,”
J. Mater. Sci.
,
22
(
9
), pp.
3276
3286
.
17.
Kanel
,
G.
,
Razorenov
,
S.
, and
Fortov
,
V.
,
2004
,
Shock-Wave Phenomena and the Properties of Condensed Matter
,
Springer
,
New York
, Chap. 1.
18.
Deng
,
C.
, and
Molian
,
P.
,
2013
, “
Nanodiamond Powder Compaction via Laser Shockwaves: Experiments and Finite Element Analysis
,”
Powder Technol.
,
239
, pp.
36
46
.
19.
Deng
,
C.
, and
Molian
,
P.
,
2012
, “
Laser Shock Wave Treatment of Polycrystalline Diamond Tool and Nano-Diamond Powder Compact
,”
Int. J. Adv. Manuf. Technol.
,
63
(
1–4
), pp.
259
267
.
20.
Baerga
,
V.
, and
Molian
,
P.
,
2012
, “
Laser Shockwave Sintering of Nanopowders of Yttria-Stabilized Zirconia
,”
Mater. Lett.
,
73
, pp.
8
10
.
21.
Melookaran
,
R.
,
Melaibari
,
A.
,
Deng
,
C.
, and
Molian
,
P.
,
2012
, “
Laser Shock Processing on Microstructure and Hardness of Polycrystalline Cubic Boron Nitride Tools With and Without Nanodiamond Powders
,”
Mater. Design
,
35
, pp.
235
242
.
22.
Molian
,
P.
, and
Baerga
,
V.
,
2011
, “
Laser Shock Wave Consolidation of Micro-Powder Compacts of Fully Stabilized Zirconia With Addition of Nano-Particles
,”
Adv. Appl. Ceram.
,
110
(
2
), pp.
120
123
.
23.
Molian
,
P.
,
Molian
,
R.
, and
Nair
,
R.
,
2009
, “
Laser Shock Wave Consolidation of Nanodiamond Powders on Aluminum 319
,”
Appl. Surf. Sci.
,
255
(
6
), pp.
3859
3867
.
24.
Zhyrovetsky
,
V.
,
Kovalyuk
,
B.
,
Mocharskyi
,
V.
,
Nikiforov
,
Y.
,
Onisimchuk
,
V.
,
Popovych
,
D.
, and
Serednytski
,
A.
,
2013
, “
Modification of Structure and Luminescence of ZnO Nanopowder by the Laser Shock-Wave Treatment
,”
Phys. Status Solidi
,
10
(
10
), pp.
1288
1291
.
25.
Irifune
,
T.
,
Kurio
,
A.
,
Sakamoto
,
S.
,
Inoue
,
T.
, and
Sumiya
,
H.
,
2003
, “
Materials: Ultrahard Polycrystalline Diamond From Graphite
,”
Nature
,
421
, pp.
599
600
.
26.
Prawer
,
S.
,
Nugent
,
K.
,
Jamieson
,
D.
,
Orwa
,
J.
,
Bursill
,
L.
, and
Peng
,
J.
,
2000
, “
The Raman Spectrum of Monocrystalline Diamond
,”
Chem. Phys. Lett.
,
332
, pp.
93
97
.
27.
Ferrari
,
A.
, and
Robertson
,
J.
,
2004
, “
Raman Spectroscopy of Amorphous, Nanostructured, Diamond-Like Carbon, and Nanodiamond
,”
Phil. Trans. R. Soc. Lond. A
,
362
(
1824
), pp.
2477
2512
.
28.
Arato
,
P.
,
Bartha
,
L.
,
Porat
,
R.
,
Berger
,
S.
, and
Rosen
,
A.
,
1998
, “
Solid or Liquid Phase Sintering of Nanocrystalline WC/Co Hard Metals
,”
Nanostruct. Mater.
,
10
(
2
), pp.
245
249
.
29.
Zhu
,
H.
, and
Averback
,
R.
,
1996
, “
Sintering Processes of Two Nanoparticles: A Study by Molecular-Dynamics Simulations
,”
Philos. Mag. Lett.
,
73
(
1
), pp.
27
32
.
30.
Vereshchagin
,
A.
,
2002
, “
Phase Diagram of Ultrafine Carbon
,”
Combust., Explo., Shock Waves
,
38
(
3
), pp.
358
359
.
31.
Qian
,
C.
,
Pantea
,
J.
,
Huang
,
T.
, and
Zhao
,
Y.
,
2004
, “
Graphitization of Diamond Powders of Different Sizes at High Pressure-High Temperature
,”
Carbon
,
42
(
12–13
), pp.
2691
2696
.
32.
Tersoff
,
J.
,
1988
, “
Empirical Interatomic Potential for Carbon, With Applications to Amorphous Carbon
,”
Phys. Rev. Lett.
,
61
(
25
), pp.
2879
2882
.
33.
Tersoff
,
J.
,
1988
, “
New Empirical Approach for the Structure and Energy of Covalent Systems
,”
Phys. Rev. B
,
37
(
12
), pp.
6991
6998
.
34.
Brenner
,
D.
,
1990
, “
Empirical Potential for Hydrocarbons for Use in Simulating the Chemical Vapor Deposition of Diamond Films
,”
Phys. Rev. B
,
42
(
15
), pp.
9458
9464
.
35.
Wang
,
X.
, and
Xu
,
X.
,
2002
, “
Molecular Dynamics Simulation of Heat Transfer and Phase Change During Laser Material Interaction
,”
ASME J. Heat Transfer
,
124
(
2
), pp.
265
270
.
36.
Plimpton
,
S.
,
1995
, “
Fast Parallel Algorithms for Short-Range Molecular Dynamics
,”
J. Comput. Phys.
,
117
(
1
), pp.
19
24
.
37.
Zhong
,
Z.
,
Wang
,
X.
, and
Feng
,
X.
,
2007
, “
Effects of Pressure and Temperature on sp3 Fraction in Diamondlike Carbon Materials
,”
J. Mater. Res.
,
22
(
10
), pp.
2770
2775
.
You do not currently have access to this content.