Product miniaturization has become a trending technology in a broad range of industries and its development is being pushed by the requirements for complexity and resolution of micromanufactured products. However, there still exists a gap in the manufacturing spectrum for complex three-dimensional (3D) structure generation capabilities with micron and submicron resolution. This paper extends the near-field electrospinning (NFES) process and develops a direct-writing (DW) technology for microfiber deposition with micrometer resolution. The proposed method presented uses an auxiliary electrode to generate an electric field perpendicular to the fiber flight path. This tunable electric field grants the user real-time control of the fiber flight path, increasing the resolution of the deposited structure. The use of an auxiliary electrode ring for fiber manipulation is proposed to further improve control over the deposition process.

References

References
1.
Salaita
,
K.
,
Wang
,
Y.
,
Fragala
,
J.
,
Vega
,
R. A.
,
Liu
,
C.
, and
Mirkin
,
C. A.
,
2006
, “
Massively Parallel Dip–Pen Nanolithography With 55,000-Pen Two-Dimensional Arrays
,”
Angew. Chem.
,
118
(
43
), pp.
7378
7381
.
2.
Gibson
,
I.
,
Rosen
,
D. W.
, and
Stucker
,
B.
,
2010
,
Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing
,
Springer
,
New York
.
3.
Hon
,
K.
,
Li
,
L.
, and
Hutchings
,
I.
,
2008
, “
Direct Writing Technology—Advances and Developments
,”
CIRP Ann.: Manuf. Technol.
,
57
(
2
), pp.
601
620
.
4.
Li
,
B.
,
Clark
,
P. A.
, and
Church
,
K.
,
2007
, “
Robust Direct-Write Dispensing Tool and Solutions for Micro/Meso-Scale Manufacturing and Packaging
,”
International Manufacturing Science And Engineering Conference
, pp.
715
721
.
5.
Vozzi
,
G.
,
Previti
,
A.
,
De Rossi
,
D.
, and
Ahluwalia
,
A.
,
2002
, “
Microsyringe-Based Deposition of Two-Dimensional and Three-Dimensional Polymer Scaffolds With a Well-Defined Geometry for Application to Tissue Engineering
,”
Tissue Eng.
,
8
(
6
), pp.
1089
1098
.
6.
Park
,
J.-U.
,
Hardy
,
M.
,
Kang
,
S. J.
,
Barton
,
K.
,
Adair
,
K.
,
Kishore Mukhopadhyay
,
D.
,
Lee
,
C. Y.
,
Strano
,
M. S.
,
Alleyne
,
A. G.
, and
Georgiadis
,
J. G.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
(
10
), pp.
782
789
.
7.
Brown
,
T. D.
,
Dalton
,
P. D.
, and
Hutmacher
,
D. W.
,
2011
, “
Direct Writing by Way of Melt Electrospinning
,”
Adv. Mater.
,
23
(
47
), pp.
5651
5657
.
8.
Wei
,
C.
, and
Dong
,
J.
,
2013
, “
Direct Fabrication of High-Resolution Three-Dimensional Polymeric Scaffolds Using Electrohydrodynamic Hot Jet Plotting
,”
J Micromech. Microeng.
,
23
(
2
), p.
025017
.
9.
Agarwal
,
S.
,
Wendorff
,
J. H.
, and
Greiner
,
A.
,
2008
, “
Use of Electrospinning Technique for Biomedical Applications
,”
Polymer
,
49
(
26
), pp.
5603
5621
.
10.
Kumbar
,
S. G.
,
Nukavarapu
,
S. P.
,
James
,
R.
,
Hogan
,
M.
, and
Laurencin
,
C. T.
,
2008
, “
Recent Patents on Electrospun Biomedical Nanostructures: An Overview
,”
Recent Pat. Biomed. Eng.
,
1
(
1
), pp.
68
78
.
11.
Chang
,
C.
,
Tran
,
V. H.
,
Wang
,
J.
,
Fuh
,
Y.-K.
, and
Lin
,
L.
,
2010
, “
Direct-Write Piezoelectric Polymeric Nanogenerator With High Energy Conversion Efficiency
,”
Nano Lett.
,
10
(
2
), pp.
726
731
.
12.
Liu
,
Z.
,
Pan
,
C.
,
Lin
,
L.
, and
Lai
,
H.
,
2013
, “
Piezoelectric Properties of PVDF/MWCNT Nanofiber Using Near-Field Electrospinning
,”
Sens. Actuators A
,
193
, pp.
13
24
.
13.
Dong
,
Z.
,
Kennedy
,
S. J.
, and
Wu
,
Y.
,
2011
, “
Electrospinning Materials for Energy-Related Applications and Devices
,”
J. Power Sources
,
196
(
11
), pp.
4886
4904
.
14.
Zhou
,
Z.
, and
Wu
,
X.-F.
,
2013
, “
Graphene-Beaded Carbon Nanofibers for Use in Supercapacitor Electrodes: Synthesis and Electrochemical Characterization
,”
J. Power Sources
,
222
, pp.
410
416
.
15.
Anton
,
F.
,
1934
, “
Process and Apparatus for Preparing Artificial Threads
,” U.S. Patent No. 1,975,504.
16.
Formhals
,
A.
,
1939
, “
Method and Apparatus for Spinning
,” U.S. Patent No. 2,349,950.
17.
Norton
,
C. L.
,
1936
, “
Method of and Apparatus for Producing Fibrous or Filamentary Material
,” U.S. Patent No. 2,048,651.
18.
Yarin
,
A. L.
,
Koombhongse
,
S.
, and
Reneker
,
D. H.
,
2001
, “
Taylor Cone and Jetting From Liquid Droplets in Electrospinning of Nanofibers
,”
J. Appl. Phys.
,
90
(
9
), pp.
4836
4846
.
19.
Gomez
,
A.
, and
Tang
,
K.
,
1994
, “
Charge and Fission of Droplets in Electrostatic Sprays
,”
Phys. Fluids
,
6
(
1
), pp.
404
414
.
20.
Yarin
,
A.
,
Koombhongse
,
S.
, and
Reneker
,
D.
,
2001
, “
Bending Instability in Electrospinning of Nanofibers
,”
J. Appl. Phys.
,
89
(
5
), pp.
3018
3026
.
21.
Reneker
,
D. H.
,
Yarin
,
A. L.
,
Fong
,
H.
, and
Koombhongse
,
S.
,
2000
, “
Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning
,”
J. Appl. Phys.
,
87
(
9
), pp.
4531
4547
.
22.
Hutmacher
,
D. W.
, and
Dalton
,
P. D.
,
2011
, “
Melt Electrospinning
,”
Chemistry
,
6
(
1
), pp.
44
56
.
23.
Huang
,
Z.-M.
,
Zhang
,
Y.-Z.
,
Kotaki
,
M.
, and
Ramakrishna
,
S.
,
2003
, “
A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites
,”
Compos. Sci. Technol.
,
63
(
15
), pp.
2223
2253
.
24.
Sun
,
D.
,
Chang
,
C.
,
Li
,
S.
, and
Lin
,
L.
,
2006
, “
Near-Field Electrospinning
,”
Nano Lett.
,
6
(
4
), pp.
839
842
.
25.
Zheng
,
G.
,
Li
,
W.
,
Wang
,
X.
,
Wu
,
D.
,
Sun
,
D.
, and
Lin
,
L.
,
2010
, “
Precision Deposition of a Nanofibre by Near-Field Electrospinning
,”
J. Phys. D: Appl. Phys.
,
43
(
41
), p.
415501
.
26.
Chang
,
C.
,
Limkrailassiri
,
K.
, and
Lin
,
L.
,
2008
, “
Continuous Near-Field Electrospinning for Large Area Deposition of Orderly Nanofiber Patterns
,”
Appl. Phys. Lett.
,
93
(
12
), p.
123111
.
27.
Bisht
,
G. S.
,
Canton
,
G.
,
Mirsepassi
,
A.
,
Kulinsky
,
L.
,
Oh
,
S.
,
Dunn-Rankin
,
D.
, and
Madou
,
M. J.
,
2011
, “
Controlled Continuous Patterning of Polymeric Nanofibers on Three-Dimensional Substrates Using Low-Voltage Near-Field Electrospinning
,”
Nano Lett.
,
11
(
4
), pp.
1831
1837
.
28.
Teo
,
W.
, and
Ramakrishna
,
S.
,
2006
, “
A Review on Electrospinning Design and Nanofibre Assemblies
,”
Nanotechnology
,
17
(
14
), p.
R89
.
29.
Matthews
,
J. A.
,
Wnek
,
G. E.
,
Simpson
,
D. G.
, and
Bowlin
,
G. L.
,
2002
, “
Electrospinning of Collagen Nanofibers
,”
Biomacromolecules
,
3
(
2
), pp.
232
238
.
30.
Chew
,
S. Y.
,
Wen
,
J.
,
Yim
,
E. K.
, and
Leong
,
K. W.
,
2005
, “
Sustained Release of Proteins From Electrospun Biodegradable Fibers
,”
Biomacromolecules
,
6
(
4
), pp.
2017
2024
.
31.
Deitzel
,
J. M.
,
Kleinmeyer
,
J. D.
,
Hirvonen
,
J. K.
, and
Beck Tan
,
N. C.
,
2001
, “
Controlled Deposition of Electrospun Poly(Ethylene Oxide) Fibers
,”
Polymer
,
42
(
19
), pp.
8163
8170
.
32.
Li
,
D.
,
Wang
,
Y.
, and
Xia
,
Y.
,
2003
, “
Electrospinning of Polymeric and Ceramic Nanofibers as Uniaxially Aligned Arrays
,”
Nano Lett.
,
3
(
8
), pp.
1167
1171
.
33.
Lee
,
J.
,
Lee
,
S. Y.
,
Jang
,
J.
,
Jeong
,
Y. H.
, and
Cho
,
D.-W.
,
2012
, “
Fabrication of Patterned Nanofibrous Mats Using Direct-Write Electrospinning
,”
Langmuir
,
28
(
18
), pp.
7267
7275
.
You do not currently have access to this content.