Wrinkling of thin films is a strain-driven process that enables scalable and low-cost fabrication of periodic micro- and nano-scale patterns. In the past, single-period sinusoidal wrinkles have been applied for thin-film metrology and microfluidics applications. However, real-world adoption of this process beyond these specific applications is limited by the inability to predictively fabricate a variety of complex functional patterns. This is primarily due to the inability of current tools and techniques to provide the means for applying large, accurate, and nonequal biaxial strains. For example, the existing biaxial tensile stages are inappropriate because they are too large to fit within the vacuum chambers that are required for thin-film deposition/growth during wrinkling. Herein, we have designed a compact biaxial tensile stage that enables (i) applying large and accurate strains to elastomeric films and (ii) in situ visualization of wrinkle formation. This stage enables one to stretch a 37.5 mm long film by 33.5% with a strain resolution of 0.027% and maintains a registration accuracy of 7 μm over repeated registrations of the stage to a custom-assembled vision system. Herein, we also demonstrate the utility of the stage in (i) studying the wrinkling process and (ii) fabricating complex wrinkled patterns that are inaccessible via other techniques. Specifically, we demonstrate that (i) spatial nonuniformity in the patterns is limited to 6.5%, (ii) one-dimensional (1D) single-period wrinkles of nominal period 2.3 μm transition into the period-doubled mode when the compressive strain due to prestretch release of plasma-oxidized polydimethylsiloxane (PDMS) film exceeds ∼18%, and (iii) asymmetric two-dimensional (2D) wrinkles can be fabricated by tuning the strain state and/or the actuation path, i.e., the strain history. Thus, this tensile stage opens up the design space for fabricating and tuning complex wrinkled patterns and enables extracting empirical process knowledge via in situ visualization of wrinkle formation.

References

References
1.
Yin
,
J.
,
Chen
,
X.
, and
Sheinman
,
I.
,
2009
, “
Anisotropic Buckling Patterns in Spheroidal Film/Substrate Systems and Their Implications in Some Natural and Biological Systems
,”
J. Mech. Phys. Solids
,
57
(
9
), pp.
1470
1484
.
2.
Wang
,
L.
,
Castro
,
C. E.
, and
Boyce
,
M. C.
,
2011
, “
Growth Strain-Induced Wrinkled Membrane Morphology of White Blood Cells
,”
Soft Matter
,
7
(
24
), pp.
11319
11324
.
3.
Flynn
,
C. O.
, and
McCormack
,
B. A. O.
,
2009
, “
A Three-Layer Model of Skin and Its Application in Simulating Wrinkling
,”
Comput. Methods Biomech. Biomed. Eng.
,
12
(
2
), pp.
125
134
.
4.
Genzer
,
J.
, and
Groenewold
,
J.
,
2006
, “
Soft Matter With Hard Skin: From Skin Wrinkles to Templating and Material Characterization
,”
Soft Matter
,
2
(
4
), pp.
310
323
.
5.
Mei
,
Y.
,
Kiravittaya
,
S.
,
Harazim
,
S.
, and
Schmidt
,
O. G.
,
2010
, “
Principles and Applications of Micro and Nanoscale Wrinkles
,”
Mater. Sci. Eng.: R
,
70
(
3–6
), pp.
209
224
.
6.
Stafford
,
C. M.
,
Guo
,
S.
,
Harrison
,
C.
, and
Chiang
,
M. Y. M.
,
2005
, “
Combinatorial and High-Throughput Measurements of the Modulus of Thin Polymer Films
,”
Rev. Sci. Instrum.
,
76
(
6
), p.
062207
.
7.
Chung
,
J. Y.
,
Lee
,
J.-H.
,
Beers
,
K. L.
, and
Stafford
,
C. M.
,
2011
, “
Stiffness, Strength, and Ductility of Nanoscale Thin Films and Membranes: A Combined Wrinkling-Cracking Methodology
,”
Nano Lett.
,
11
(
8
), pp.
3361
3365
.
8.
Khang
,
D.-Y.
,
Rogers
,
J. A.
, and
Lee
,
H. H.
,
2009
, “
Mechanical Buckling: Mechanics, Metrology, and Stretchable Electronics
,”
Adv. Funct. Mater.
,
19
(
10
), pp.
1526
1536
.
9.
Rogers
,
J. A.
,
Someya
,
T.
, and
Huang
,
Y.
,
2010
, “
Materials and Mechanics for Stretchable Electronics
,”
Science
,
327
(
5973
), pp.
1603
1607
.
10.
Chung
,
S.
,
Lee
,
J. H.
,
Moon
,
M.-W.
,
Han
,
J.
, and
Kamm
,
R. D.
,
2008
, “
Non-Lithographic Wrinkle Nanochannels for Protein Preconcentration
,”
Adv. Mater.
,
20
(
16
), pp.
3011
3016
.
11.
Groenewold
,
J.
,
2001
, “
Wrinkling of Plates Coupled With Soft Elastic Media
,”
Physica A
,
298
(
1–2
), pp.
32
45
.
12.
Chiche
,
A.
,
Stafford
,
C. M.
, and
Cabral
,
J. T.
,
2008
, “
Complex Micropatterning of Periodic Structures on Elastomeric Surfaces
,”
Soft Matter
,
4
(
12
), pp.
2360
2364
.
13.
Brau
,
F.
,
Vandeparre
,
H.
,
Sabbah
,
A.
,
Poulard
,
C.
,
Boudaoud
,
A.
, and
Damman
,
P.
,
2011
, “
Multiple-Length-Scale Elastic Instability Mimics Parametric Resonance of Nonlinear Oscillators
,”
Nat. Phys.
,
7
(
1
), pp.
56
60
.
14.
Bowden
,
N.
,
Brittain
,
S.
,
Evans
,
A. G.
,
Hutchinson
,
J. W.
, and
Whitesides
,
G. M.
,
1998
, “
Spontaneous Formation of Ordered Structures in Thin Films of Metals Supported on an Elastomeric Polymer
,”
Nature
,
393
(
6681
), pp.
146
149
.
15.
Huck
,
W. T. S.
,
Bowden
,
N.
,
Onck
,
P.
,
Pardoen
,
T.
,
Hutchinson
,
J. W.
, and
Whitesides
,
G. M.
,
2000
, “
Ordering of Spontaneously Formed Buckles on Planar Surfaces
,”
Langmuir
,
16
(
7
), pp.
3497
3501
.
16.
Hobart
,
K.
,
Kub
,
F.
,
Fatemi
,
M.
,
Twigg
,
M.
,
Thompson
,
P.
,
Kuan
,
T.
, and
Inoki
,
C.
,
2000
, “
Compliant Substrates: A Comparative Study of the Relaxation Mechanisms of Strained Films Bonded to High and Low Viscosity Oxides
,”
J. Electron. Mater.
,
29
(
7
), pp.
897
900
.
17.
Huntington
,
M. D.
,
Engel
,
C. J.
,
Hryn
,
A. J.
, and
Odom
,
T. W.
,
2013
, “
Polymer Nanowrinkles With Continuously Tunable Wavelengths
,”
ACS Appl. Mater. Interfaces
,
5
(
13
), pp.
6438
6442
.
18.
Guvendiren
,
M.
,
Yang
,
S.
, and
Burdick
,
J. A.
,
2009
, “
Swelling-Induced Surface Patterns in Hydrogels With Gradient Crosslinking Density
,”
Adv. Funct. Mater.
,
19
(
19
), pp.
3038
3045
.
19.
Breid
,
D.
, and
Crosby
,
A. J.
,
2011
, “
Effect of Stress State on Wrinkle Morphology
,”
Soft Matter
,
7
(
9
), pp.
4490
4496
.
20.
Bowden
,
N.
,
Huck
,
W. T. S.
,
Paul
,
K. E.
, and
Whitesides
,
G. M.
,
1999
, “
The Controlled Formation of Ordered, Sinusoidal Structures by Plasma Oxidation of an Elastomeric Polymer
,”
Appl. Phys. Lett.
,
75
(
17
), pp.
2557
2559
.
21.
Jiang
,
H.
,
Khang
,
D.-Y.
,
Song
,
J.
,
Sun
,
Y.
,
Huang
,
Y.
, and
Rogers
,
J. A.
,
2007
, “
Finite Deformation Mechanics in Buckled Thin Films on Compliant Supports
,”
Proc. Natl. Acad. Sci.
,
104
(
40
), pp.
15607
15612
.
22.
Cai
,
S.
,
Breid
,
D.
,
Crosby
,
A. J.
,
Suo
,
Z.
, and
Hutchinson
,
J. W.
,
2011
, “
Periodic Patterns and Energy States of Buckled Films on Compliant Substrates
,”
J. Mech. Phys. Solids
,
59
(
5
), pp.
1094
1114
.
23.
Hutchinson
,
J. W.
,
2013
, “
The Role of Nonlinear Substrate Elasticity in the Wrinkling of Thin Films
,”
Philos. Trans. R. Soc., A
,
371
(
1993
).
24.
Sun
,
J. Y.
,
Xia
,
S.
,
Moon
,
M. W.
,
Oh
,
K. H.
, and
Kim
,
K. S.
,
2011
, “
Folding Wrinkles of a Thin Stiff Layer on a Soft Substrate
,”
Proc. R. Soc. A
,
468
(
2140
), pp.
932
953
.
25.
Wu
,
D.
,
Yin
,
Y.
,
Xie
,
H.
,
Shang
,
Y.
,
Li
,
C.
,
Wu
,
L.
, and
Dai
,
X.
,
2014
, “
Controlling the Surface Buckling Wrinkles by Patterning the Material System of Hard-Nano-Film/Soft-Matter-Substrate
,”
Sci. China: Phys., Mech. Astron.
,
57
(
4
), pp.
637
643
.
26.
Yin
,
J.
,
Yagüe
,
J. L.
,
Eggenspieler
,
D.
,
Gleason
,
K. K.
, and
Boyce
,
M. C.
,
2012
, “
Deterministic Order in Surface Micro-Topologies Through Sequential Wrinkling
,”
Adv. Mater.
,
24
(
40
), pp.
5441
5446
.
27.
Yin
,
J.
,
Yague
,
J. L.
,
Boyce
,
M. C.
, and
Gleason
,
K. K.
,
2014
, “
Biaxially Mechanical Tuning of 2-D Reversible and Irreversible Surface Topologies Through Simultaneous and Sequential Wrinkling
,”
ACS Appl. Mater. Interfaces
,
6
(
4
), pp.
2850
2857
.
28.
Lin
,
P. C.
, and
Yang
,
S.
,
2007
, “
Spontaneous Formation of One-Dimensional Ripples in Transit to Highly Ordered Two-Dimensional Herringbone Structures Through Sequential and Unequal Biaxial Mechanical Stretching
,”
Appl. Phys. Lett.
,
90
(
24
), p.
241903
.
29.
Saha
,
S. K.
,
2014
, “
Predictive Design and Fabrication of Complex Micro and Nano Patterns Via Wrinkling for Scalable and Affordable Manufacturing
,” Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, http://hdl.handle.net/1721.1/93860.
30.
Slocum
,
A. H.
,
1988
, “
Kinematic Couplings for Precision Fixturing—Part I: Formulation of Design Parameters
,”
Precis. Eng.
,
10
(
2
), pp.
85
91
.
31.
Schouten
,
C. H.
,
Rosielle
,
P. C. J. N.
, and
Schellekens
,
P. H. J.
,
1997
, “
Design of a Kinematic Coupling for Precision Applications
,”
Precis. Eng.
,
20
(
1
), pp.
46
52
.
32.
Cao
,
Y.
, and
Hutchinson
,
J. W.
,
2012
, “
Wrinkling Phenomena in Neo-Hookean Film/Substrate Bilayers
,”
ASME J. Appl. Mech.
,
79
(
3
), p.
031019
.
33.
Saha
,
S. K.
, and
Culpepper
,
M. L.
,
2012
, “
Predicting the Quality of One-Dimensional Periodic Micro and Nano Structures Fabricated Via Wrinkling
,”
ASME
Paper No. IMECE2012-87081.
You do not currently have access to this content.