This paper is aimed at investigating the effects of graphene oxide platelet (GOP) geometry (i.e., lateral size and thickness) and oxygen functionalization on the cooling and lubrication performance of GOP colloidal suspensions. The techniques of thermal reduction and ultrasonic exfoliation were used to manufacture three different types of GOPs. For each of these three types of GOPs, colloidal solutions with GOP concentrations varying between 0.1 and 1 wt.% were evaluated for their dynamic viscosity, thermal conductivity, and micromachining performance. The ultrasonically exfoliated GOPs (with 2–3 graphene layers and lowest in-solution characteristic lateral length of 120 nm) appear to be the most favorable for micromachining applications. Even at the lowest concentration of 0.1 wt.%, they are capable of providing a 51% reduction in the cutting temperature and a 25% reduction in the surface roughness value over that of the baseline semisynthetic cutting fluid. For the thermally reduced GOPs (TR GOPs) (with 4–8 graphene layers and in-solution characteristic lateral length of 562–2780 nm), a concentration of 0.2 wt.% appears to be optimal. The findings suggest that the differences seen between the colloidal suspensions in terms of their droplet spreading, evaporation, and the subsequent GOP film-formation characteristics may be better indicators of their machining performance, as opposed to their bulk fluid properties.

References

References
1.
Ehmann
,
K. F.
,
Bourell
,
D.
,
Culpepper
,
M. L.
,
Hodgson
,
T. J.
,
Kurfess
,
T. R.
,
Madou
,
M.
,
Rajurkar
,
K.
, and
DeVor
,
R. E.
,
2005
, “
Micromanufacturing: International Research and Development
,” World Technology Evaluation Center (WTEC) Panel Report, Baltimore, MD, http://www.wtec.org/micromfg/report/Micro-report.pdf
2.
Liu
,
X.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Ehmann
,
K. F.
,
2004
, “
The Mechanics of Machining at the Micro-Scale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.
3.
Honegger
,
A. E.
,
Langstaff
,
G. Q.
,
Phillip
,
A. G.
,
Vanravenswaay
,
T. D.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
Development of an Automated Microfactory—Part 1: Microfactory Architecture and Sub-Systems Development
,” Transactions of NAMRI SME, Vol.
34
, pp.
333
340
.
4.
Honegger
,
A. E.
,
Langstaff
,
G. Q.
,
Phillip
,
A. G.
,
Vanravenswaay
,
T. D.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
Development of an Automated Microfactory—Part 2: Experimentation and Analysis
,” Transactions of NAMRI SME, Vol.
34
, pp.
341
348
.
5.
Ellicott
,
G. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2009
, “
Machinability Investigation of Micro-Scale Hard Turning of 52100 Steel
,” Transactions of NAMRI/SME, Vol.
37
, pp.
143
150
.
6.
Zesheng
,
L.
,
Haijun
,
H.
,
Yahou
,
S.
, and
Qing
,
S.
,
2010
, “
Study of Residual Stresses in Ultrasonic Torsional Vibration Assisted Micro-Milling
,”
Proc. SPIE
,
7657
, p.
76571F
.
7.
Wang
,
B.
,
Liang
,
Y. C.
,
Zhao
,
Y.
, and
Dong
,
S.
,
2006
, “
Measurement of the Residual Stress in the Micro Milled Thin-Walled Structures
,”
J. Phys.: Conf. Ser.
,
48
, pp.
1127
1130
.
8.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2006
, “
An Analytical Model for the Prediction of Minimum Chip Thickness in Micro-Machining
,”
ASME J. Manuf. Sci. Eng.
,
128
(
2
), pp.
474
481
.
9.
Jun
,
M. B. G.
,
DeVor
,
R. E.
,
Kapoor
,
S. G.
, and
Englert
,
F.
,
2008
, “
Experimental Investigation of Machinability and Tool Wear in Micro-Endmilling
,” Transactions of NAMRI/SME, Vol.
36
, pp.
201
208
.
10.
Hidehito
,
W.
,
Hideo
,
T.
, and
Masami
,
M.
,
2009
, “
High-Speed Micro Drilling on Printed Circuit Boards-Influence of PCB Composite Material on Drill Breakage
,”
J. Jpn. Soc. Precis. Eng.
,
75
(
12
), pp.
1428
1433
.
11.
Kai
,
L.
, and
Melkote
,
S. N.
,
2006
, “
Effect of Plastic Side Flow on Surface Roughness in Micro-Turning Process
,”
Int. J. Mach. Tools Manuf.
,
46
(
14
), pp.
1778
1785
.
12.
Sood
,
S.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2010
, “
Micro-Scale Machining of Bulk Metallic Glass
,”
5th International Conference on Micro-Machining
, Madison, WI, pp. 149–156.
13.
Saoubi
,
R. M.
,
Outeiro
,
J. C.
,
Chandrasekaran
,
H.
,
Dillon
,
O. W.
, and
Jawahir
,
I. S.
,
2008
, “
A Review of Surface Integrity in Machining and Its Effects on Functional Performance and Life of Machined Products
,”
Int. J. Sustainable Manuf.
,
1
(
1–2
), pp.
203
236
.
14.
Tansel
,
I. N.
,
Arkan
,
T. T.
,
Bao
,
W. Y.
,
Mahendrakar
,
N.
,
Shisler
,
B.
,
Smith
,
D.
, and
McCool
,
M.
,
2000
, “
Tool Wear Estimation in Micro-Machining—Part I: Tool Usage-Cutting Force Relationship
,”
Int. J. Mach. Tools Manuf.
,
40
(
4
), pp.
599
608
.
15.
Torres
,
C. D.
,
Heaney
,
P. J.
,
Sumant
,
A. V.
,
Hamilton
,
M. A.
,
Carpick
,
E. W.
, and
Pfefferkorn
,
F. E.
,
2009
, “
Analyzing the Performance of Diamond-Coated Micro End Mills
,”
Int. J. Mach. Tools Manuf.
,
49
(
7–8
), pp.
599
612
.
16.
Samuel
,
J.
,
Rafiee
,
J.
,
Dhiman
,
P.
,
Yu
,
Z.-Z.
, and
Koratkar
,
N.
,
2011
, “
Graphene Colloidal Suspensions as High Performance Semi-Synthetic Metal-Working Fluids
,”
J. Phys. Chem. C
,
115
(
8
), pp.
3410
3415
.
17.
Chu
,
B.
,
Singh
,
E.
,
Koratkar
,
N.
, and
Samuel
,
J.
,
2013
, “
Graphene-Enhanced Environmentally-Benign Cutting Fluids for High-Performance Micro-Machining Applications
,”
J. Nanosci. Nanotechnol.
,
13
(
8
), pp.
5500
5504
.
18.
Smith
,
P. J.
,
Chu
,
B.
,
Singh
,
E.
,
Chow
,
P.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2015
, “
Graphene Oxide Colloidal Suspensions Mitigate Carbon Diffusion During Diamond Turning of Steel
,”
J. Manuf. Processes
,
17
, pp.
41
47
.
19.
Hummers
,
W. S.
, Jr.
, and
Offeman
,
R. E.
,
1958
, “
Preparation of Graphitic Oxide
,”
J. Am. Chem. Soc.
,
80
(
6
), p.
1339
.
20.
Dreyer
,
D. R.
,
Park
,
S.
,
Bielawski
,
C. W.
, and
Ruoff
,
R. S.
,
2010
, “
The Chemistry of Graphene Oxide
,”
Chem. Soc. Rev.
,
39
(
1
), pp.
228
240
.
21.
McAllister
,
M. J.
,
Li
,
J. L.
,
Adamson
,
D. H.
,
Schniepp
,
H. C.
,
Abdala
,
A. A.
,
Liu
,
J.
,
Alonso
,
M. H.
, and
Aksay
,
I. A.
,
2007
, “
Single Sheet Functionalized Graphene by Oxidation and Thermal Expansion of Graphite
,”
Chem. Mater.
,
19
(
18
), pp.
4396
4404
.
22.
You
,
S.
,
Luzan
,
S. M.
,
Szabo
,
T.
, and
Talyzin
,
A. V.
,
2013
, “
Effect of Synthesis Method on Solvation and Exfoliation of Graphite Oxide
,”
Carbon
,
52
, pp.
171
180
.
23.
Stankovich
,
S.
,
Dikin
,
D. A.
,
Piner
,
R. D.
,
Kohlhaas
,
K. A.
,
Kleinhammes
,
A.
,
Jia
,
Y.
,
Wu
,
Y.
,
Nguyen
,
S. T.
, and
Ruoff
,
R. S.
,
2007
, “
Synthesis of Graphene-Based Nanosheets Via Chemical Reduction of Exfoliated Graphite Oxide
,”
Carbon
,
45
(
7
), pp.
1558
1565
.
24.
Rourke
,
J. P.
,
Pandey
,
P. A.
,
Moore
,
J. J.
,
Bates
,
M.
,
Kinloch
,
I. A.
,
Young
,
R. J.
, and
Wilson
,
N. R.
,
2011
, “
The Real Graphene Oxide Revealed: Stripping the Oxidative Debris From the Graphene Like Sheets
,”
Angew. Chem.
,
123
(
14
), pp.
3231
3235
.
25.
Braun
,
A.
,
Couteau
,
O.
,
Franks
,
K.
,
Kestens
,
V.
,
Roebben
,
G.
,
Lamberty
,
A.
, and
Linsinger
,
T. P. J.
,
2011
, “
Validation of Dynamic Light Scattering and Centrifugal Liquid Sedimentation Methods for Nanoparticle Characterization
,”
Adv. Powder Technol.
,
22
(
6
), pp.
766
770
.
26.
Stoller
,
M. D.
,
Park
,
S.
,
Zhu
,
Y.
,
An
,
J.
, and
Ruoff
,
R. S.
,
2008
, “
Graphene-Based Ultracapacitors
,”
Nano Lett.
,
8
(
10
), pp.
3498
3502
.
27.
Schniepp
,
H. C.
,
Li
,
J. L.
,
McAllister
,
M. J.
,
Sai
,
H.
,
Herrera-Alonso
,
M.
,
Adamson
,
D. H.
,
Prud'homme
,
R. K.
,
Car
,
R.
,
Saville
,
D. A.
, and
Aksay
,
I. A.
,
2006
, “
Functionalized Single Graphene Sheets Derived From Splitting Graphite Oxide
,”
J. Phys. Chem. B
,
110
(
17
), pp.
8535
8539
.
28.
Du
,
Q.
,
Zheng
,
M.
,
Zhang
,
L.
,
Wang
,
Y.
,
Chen
,
J.
,
Xue
,
L.
,
Dai
,
W.
,
Ji
,
G.
, and
Cao
,
J.
,
2010
, “
Preparation of Functionalized Graphene Sheets by a Low-Temperature Thermal Exfoliation Approach and Their Electrochemical Supercapacitive Behaviors
,”
Electrochim. Acta
,
55
(
12
), pp.
3897
3903
.
29.
Karthikeyan
,
N. R.
,
Philip
,
J.
, and
Raj
,
B.
,
2008
, “
Effect of Clustering on the Thermal Conductivity of Nanofluids
,”
Mater. Chem. Phys.
,
109
(
1
), pp.
50
55
.
30.
Bittorf
,
P. J.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2006
, “
Effect of Water Phase Surface Tension and Viscosity on Metalworking Fluid Functionality
,” Transactions of the North American Manufacturing Research Institute of SME, Vol.
34
, pp.
555
562
.
31.
Bittorf
,
P. J.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Rajagopalan
,
N.
,
2007
, “
Transiently Stable Emulsions for Metalworking Fluids
,” Transactions of the North American Manufacturing Research Institute of SME, Vol.
35
, pp.
343
350
.
32.
Jun
,
M. B. G.
,
Joshi
,
S. S.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
An Experimental Evaluation of an Atomization-Based Cutting Fluid Application System for Micromachining
,”
ASME J. Manuf. Sci. Eng.
,
130
(
3
), p.
031118
.
33.
Ghai
,
I.
,
Wentz
,
J. E.
,
Kapoor
,
S. G.
,
DeVor
,
R. E.
, and
Samuel
,
J.
,
2010
, “
Droplet Behavior on a Rotating Surface for Atomization-Based Cutting Fluid Application in Micro-Machining
,”
ASME J. Manuf. Sci. Eng.
,
132
(
1
), p.
011017
.
34.
Ghai
,
I.
,
Samuel
,
J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2013
, “
Analysis of Droplet Spreading on a Rotating Surface and the Prediction of Cooling and Lubrication Performance of an Atomization-Based Cutting Fluid System
,”
ASME J. Manuf. Sci. Eng.
,
135
(
3
), p.
031003
.
35.
Kwon
,
P.
,
Schiemann
,
T.
, and
Kountanya
,
R.
,
2001
, “
An Inverse Estimation Scheme to Measure Steady-State Tool-Chip Interface Temperatures Using an Infrared Camera
,”
Int. J. Mach. Tool Manuf.
,”
41
(
7
), pp.
1015
1030
.
You do not currently have access to this content.