This paper presents a five-axis ball-end milling force model that is specifically tailored to microscale machining. A composite cutting force is generated by combining two force contributions from a shearing/ploughing slip-line (SL) field model and a quasi-static indentation (ID) model. To fully capture the features of microscale five-axis machining, a unique chip thickness algorithm based on the velocity kinematics of a ball-end mill is proposed. This formulation captures intricate tool trajectories as well as readily allows the integration of runout and elastic recovery effects. A workpiece updating algorithm has also been developed to identify tool–workpiece engagement. As a dual purpose, historical elastic recovery is stored locally on the meshed workpiece surface in vector form so that the directionality of elastic recovery is preserved for future time increments. The model has been validated through a comparison with five-axis end mill force data. Simulation results show reasonably accurate replication of end milling cutting forces with minimal experimental data fitting.

References

References
1.
Ehmann
,
K. F.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2008
, “
Design and Analysis of Micro/Meso-Scale Machine Tools
,”
Smart Devices Mach. Adv. Manuf.
,
2008
, pp.
283
318
.10.1007/978-1-84800-147-3_12
2.
Liu
,
X.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
2005
, “
The Mechanics of Machining at the Microscale: Assessment of the Current State of the Science
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
666
678
.10.1115/1.1813469
3.
Malekian
,
M.
,
Park
,
S. S.
,
Sajjadi
,
M.
, and
Jun
,
M. B. G.
,
2009
, “
Mechanistic Force Modeling of Micro Ball End Milling Processes
,” Society of Manufacturing Engineers, Paper No. TP09PUB029
4.
Phillip
,
A. G.
,
2008
, “
Development and Evaluation of a Five-Axis Micro/Meso-Scale Machine Tool
,” Master's thesis, University of Illinois at Urbana-Champaign, Urbana, IL.
5.
Gietzelt
,
T.
,
Eichhorn
,
L.
, and
Schubert
,
K.
,
2008
, “
Manufacturing of Microstructures With High Aspect Ratio by Micromachining
,”
Microsyst. Technol.
,
14
(
9–11
), pp.
1525
1529
.10.1007/s00542-007-0535-6
6.
Lazoglu
,
I.
,
Boza
,
Y.
, and
Erdimb
,
H.
,
2011
, “
Five-Axis Milling Mechanics for Complex Free Form Surfaces
,”
CIRP Ann. Manuf. Technol.
,
60
(
1
), pp.
117
120
.10.1016/j.cirp.2011.03.090
7.
Zhu
,
R.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2000
, “
Mechanistic Modeling of the Ball End Milling Process for Multi-Axis Machining of Free-Form Surfaces
,”
ASME J. Manuf. Sci. Eng.
,
123
(
3
), pp.
369
379
.10.1115/1.1369357
8.
Tansel
,
I.
,
Rodriguez
,
O.
, and
Trujillo
,
M.
,
1998
, “
Micro-End-Milling—I. Wear and Breakage
,”
Int. J. Mach. Tools Manuf.
,
38
(
12
) pp.
1419
1436
.10.1016/S0890-6955(98)00015-7
9.
Erdim
,
H.
,
Lazoglu
,
I.
, and
Ozturk
,
B.
,
2006
, “
Feedrate Scheduling Strategies for Free-Form Surfaces
,”
Int. J. Mach. Tools Manuf.
,
46
(
7–8
), pp.
747
757
.10.1016/j.ijmachtools.2005.07.036
10.
Altıntaş
,
Y.
, and
Lee
,
P.
,
1998
, “
Mechanics and Dynamics of Ball End Milling
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
684
692
.10.1115/1.2830207
11.
Fard
,
M. J. B.
, and
Bordatchev
,
E. V.
,
2013
, “
Experimental Study of the Effect of Tool Orientation in Five-Axis Micro-Milling of Brass Using Ball-End Mills
,”
Int. J. Adv. Manuf. Technol.
,
67
(
5–8
), pp.
1079
1089
.10.1007/s00170-012-4549-6
12.
Sonawane
,
H.
, and
Joshi
,
S. S.
,
2015
, “
Analytical Modeling of Chip Geometry in High-Speed Ball-End Milling on Inclined Inconel-718 Workpieces
,”
ASME J. Manuf. Sci. Eng.
,
137
(
1
), p.
011005
.10.1115/1.4028635
13.
Vogler
,
M. P.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2005
, “
On the Modeling and Analysis of Machining Performance in Micro-Endmilling—Part II: Cutting Force Prediction
,”
ASME J. Manuf. Sci. Eng.
,
126
(
4
), pp.
695
705
.10.1115/1.1813471
14.
Jun
,
M. B.
,
Liu
,
X.
, and
DeVor
,
R. E.
,
2006
, “
Investigation of the Dynamics of Microend Milling—Part I: Model Development
,”
ASME J. Manuf. Sci. Eng.
,
128
(
4
), pp.
893
900
.10.1115/1.2193546
15.
Adibi-Sedeh
,
A. H.
, and
Bahr
,
B.
,
2002
, “
Upper Bound Analysis of Oblique Cutting With Nose Radius Tools
,”
Int. J. Mach. Tools Manuf.
,
42
(
9
), pp.
1081
1094
.10.1016/S0890-6955(02)00007-X
16.
Seethaler
,
R. J.
, and
Yellowley
,
I.
,
1997
, “
An Upper-Bound Cutting Model for Oblique Cutting Tools With a Nose Radius
,”
Int. J. Mach. Tools Manuf.
,
37
(
2
), pp.
119
134
.10.1016/S0890-6955(96)00015-6
17.
Waldorf
,
D. J.
,
DeVor
,
R. E.
, and
Kapoor
,
S. G.
,
1998
, “
A Slip-Line Field for Ploughing During Orthogonal Cutting
,”
ASME J. Manuf. Sci. Eng.
,
120
(
4
), pp.
693
699
.10.1115/1.2830208
18.
Fang
,
N.
,
2003
, “
Slip-Line Modeling of Machining With a Rounded-Edge Tool—Part I: New Model and Theory
,”
J. Mech. Phys. Solids
,
51
(
4
), pp.
715
742
.10.1016/S0022-5096(02)00060-1
19.
Jin
,
X.
, and
Altıntaş
,
Y.
,
2011
, “
Slip-Line Field Model of Micro-Cutting Process With Round Tool Edge Effect
,”
J. Mater. Process. Technol.
,
211
(
3
), pp.
339
355
.10.1016/j.jmatprotec.2010.10.006
20.
Tuysuz
,
O.
, and
Altıntaş
,
Y.
,
2013
, “
Prediction of Cutting Forces in Three and Five-Axis Ball-End Milling With Tool Indentation Effect
,”
Int. J. Mach. Tools Manuf.
,
66
, pp.
66
81
.10.1016/j.ijmachtools.2012.12.002
21.
López de Lacalle
,
L. N.
,
Lamikiz
,
A.
, and
Sánchez
,
J. A.
,
2004
, “
Effects of Tool Deflection in the High-Speed Milling of Inclined Surfaces
,”
Int. J. Adv. Manuf. Technol.
,
24
(
9–10
), pp.
621
631
.10.1007/s00170-003-1723-x
You do not currently have access to this content.