A scalable, prototype plasmonic nanomanufacturing system was designed, built, and tested for patterning nanostructures on the surfaces of drug-eluting stents (DES), the objective being to prevent the late-stent thrombosis (LST). Nanopatterning, unlike micro/macropatterning, of DES has proven to provide optimal, rapid, and preferential endothelial cell (EC) attachment (antithrombosis) while not significantly affecting shear-mediated platelet activation (prothrombosis). In this work, laser-induced, high-density surface plasmon polaritons (SPPs) were generated and utilized to produce nanostructures on the surfaces of DES by electric field enhancement mechanism. The scalability aspects such as downsizing the feature, improving the precision, increasing the throughput, and reducing the cost were investigated. Results indicated fairly uniform nanostructures; high throughput; excellent repeatability and resolution; significant cost savings; and potential for high retention of drug dose in the stent. The work represents an unprecedented area in nanomanufacturing where the basic science contribution is to harness the energy from plasmon polaritons by effectively “customizing” and “controlling” their propagation, while the engineering contribution is a scalability approach to reliably nanopattern medical devices in high volume with nanometer resolution. The nanomanufacturing system developed in this study may be an enabling technology to strongly impact other fields such as semiconductors, organic solar cells, and nano-electromechanical systems (NEMS).

References

References
1.
Ozbay
,
E.
,
2006
, “
Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions
,”
Science
,
311
(
5758
), pp.
189
193
.10.1126/science.1114849
2.
Zayatsa
,
A. V.
,
Smolyaninov
,
I. I.
, and
Maraduddin
,
A. A.
,
2005
, “
Nano-Optics of Surface Plasmon Polaritons
,”
Phys. Rep.
,
408
(
3–4
), pp.
131
314
.10.1016/j.physrep.2004.11.001
3.
Fransilla
,
S.
,
2010
,
Introduction to Microfabrication
,
2nd ed.
,
Wiley
,
Chichester, UK
, Chap. 1.10.1002/9781119990413
4.
Molian
,
P.
,
Lin
,
Z.
, and
Zou
,
Q.
,
2008
, “
Nano-Holes in Silicon Wafers Using Laser-Induced Surface Plasmon Polaritons
,”
J. Nanosci. Nanotechnol.
,
8
(
4
), pp.
2163
2166
.10.1166/jnn.2008.318
5.
Simsek
,
E.
, and
Akturk
,
S.
,
2011
, “
Plasmonic Enhancement During Femtosecond Laser Drilling of Sub-Wavelength Holes in Metals
,”
Plasmonics
,
6
(
4
), pp.
767
772
.10.1007/s11468-011-9262-z
6.
Valev
,
V. K.
,
Denkova
,
D.
,
Zheng
,
X.
,
Kuznetsov
,
A.
,
Reinhardt
,
C.
,
Chichkov
,
B.
,
Tsutsumanova
,
G.
,
Osley
,
E.
,
Petkov
,
V.
,
de Clercq
,
B.
,
Silhanek
,
A.
,
Jeyaram
,
Y.
,
Volskiy
,
V.
,
Warburton
,
P.
,
Vandenbosch
,
G.
,
Russev
,
S.
,
Aktsipetrov
,
O.
,
Ameloot
,
M.
,
Moshchalkov
,
V.
, and
Verbiest
,
T.
,
2011
, “
Plasmon-Enhanced Sub-Wavelength Laser Ablation: Plasmonic Nanojets
,”
Adv. Mater.
,
24
(
10
), pp.
OP28
OP35
.10.1002/adma.201103807
7.
Garner
,
Q.
, and
Molian
,
P.
,
2013
, “
Formation of Gold Microparticles by Ablation With Surface Plasmons
,”
Nanomaterials
,
3
(
4
), pp.
592
605
.10.3390/nano3040592
8.
Park
,
K.
,
Choi
,
H.
,
Chang
,
C.
,
Cohen
,
R.
,
McKinley
,
G.
, and
Barbastathis
,
G.
,
2012
, “
Nanotextured Silica Surfaces With Robust Superhydrophobicity and Omnidirectional Broadband Supertransmissivity
,”
ACS Nano
,
6
(
5
), pp.
3789
3799
.10.1021/nn301112t
9.
Yang
,
H.
,
Wang
,
Y.
,
Fang
,
L.
, and
Ge
,
S.
,
2011
, “
Laser Processing Technique of Stainless Steel Surface Nanotexture
,”
Adv. Sci. Lett.
,
4
(
3
), pp.
891
894
.10.1166/asl.2011.1690
10.
Jeong
,
S.
,
Hu
,
L.
,
Lee
,
H.
,
Garnett
,
E.
,
Choi
,
J.
, and
Cui
,
Y.
,
2010
, “
Fast and Scalable Printing of Large Area Monolayer Nanoparticles for Nanotexturing Applications
,”
Nano Lett.
,
10
(
8
), pp.
2989
2994
.10.1021/nl101432r
11.
Hausmann
,
U. P.
,
Joerges
,
P.
,
Heinzl
,
J.
, and
Talke
,
F.
,
2009
, “
Nano-Texturing of Magnetic Recording Sliders Via Laser Ablation
,”
Microsyst. Technol.
,
15
(
10–11
), pp.
1747
1751
.10.1007/s00542-009-0890-6
12.
Li
,
L.
,
Guo
,
W.
,
Wang
,
Z. B.
,
Liu
,
Z.
,
Whitehead
,
D.
, and
Luk'yanchuk
,
B.
,
2009
, “
Large-Area Laser Nano-Texturing With User-Defined Patterns
,”
J. Micromech. Microeng.
,
19
(
5
), p.
054002
.10.1088/0960-1317/19/5/054002
13.
Koch
,
J.
,
Korte
,
F.
,
Bauer
,
T.
,
Fallnich
,
C.
,
Ostendorf
,
A.
, and
Chichkov
,
B. N.
,
2005
, “
Nanotexturing of Gold Films by Femtosecond Laser-Induced Melt Dynamics
,”
Appl. Phys. A: Mater. Sci. Process.
,
81
(
2
), pp.
325
328
.10.1007/s00339-005-3212-6
14.
de Oliveira
,
P. T.
, and
Nanci
,
A.
,
2004
, “
Nanotexturing of Titanium-Based Surfaces Upregulates Expression of Bone Sialoprotein and Osteopontin by Cultured Osteogenic Cells
,”
Biomaterials
,
25
(
3
), pp.
403
413
.10.1016/S0142-9612(03)00539-8
15.
Buehler
,
M.
, and
Molian
,
P.
,
2012
, “
Nanosecond Laser Induced Periodic Surface Structures on Drug Elution Profiles in Stents
,”
ASME J. Med. Devices
,
6
(
3
), p.
031002
.10.1115/1.4006539
16.
Nair
,
R.
,
Molian
,
V.
, and
Molian
,
P.
,
2012
, “
Femtosecond Laser Nanotexturing of Drug Eluting Stents
,”
ASME J. Manuf. Sci. Eng.
,
134
(
6
), p.
061008
.10.1115/1.4007713
17.
Xie
,
Z.
,
Yu
,
W.
,
Wang
,
T.
,
Zhang
,
H.
,
Fu
,
Y.
,
Liu
,
H.
,
Li
,
F.
,
Lu
,
Z.
, and
Sun
,
Q.
,
2011
, “
Plasmonic Nanolithography: A Review
,”
Plasmonics
,
6
(
3
), pp.
565
580
.10.1007/s11468-011-9237-0
18.
Kim
,
Y.
,
Kim
,
S.
,
Jung
,
H.
,
Lee
,
E.
, and
Hahn
,
J.
,
2009
, “
Plasmonic Nano Lithography With a High Scan Speed Contact Probe
,”
Opt. Express
,
17
(
22
), pp.
19476
19485
.10.1364/OE.17.019476
19.
Srituravanich
,
W.
,
Pan
,
L.
,
Wang
,
Y.
,
Sun
,
C.
,
Bogy
,
D. B.
, and
Zhang
,
X.
,
2008
, “
Flying Plasmonic Lens in the Near Field for High-Speed Nanolithography
,”
Nat. Nanotechnol.
,
3
(
12
), pp.
733
737
.10.1038/nnano.2008.303
20.
Genereux
,
P.
, and
Mehran
,
R.
,
2009
, “
Are Drug-Eluting Stents Safe in the Long Term?
,”
Can. Med. Assoc. J.
,
180
(
2
), pp.
154
155
.10.1503/cmaj.081907
21.
Williams
,
D.
,
Abbott
,
J.
, and
Kip
,
K.
,
2006
, “
Outcomes of 6906 Patients Undergoing Percutaneous Coronary Intervention in the Era of Drug-Eluting Stents: Report of the DES Cover Registry
,”
Circulation
,
114
(
20
), pp.
2154
2162
.10.1161/CIRCULATIONAHA.106.667915
22.
Feres
,
F.
,
Costa
,
J. R.
, Jr.
, and
Abizaid
,
A.
,
2006
, “
Very Late Thrombosis After Drug-Eluting Stents
,”
Catheterization Cardiovasc. Interventions
,
68
(
1
), pp.
83
88
.10.1002/ccd.20692
23.
Lamers
,
E.
,
van Horssen
,
R.
,
van Delft
,
F.
,
Luttge
,
R.
,
Walboomers
,
X. F.
, and
Jansen
,
J. A.
,
2010
, “
The Influence of Nanoscale Topographical Cues on Initial Osteoblast Morphology and Migration
,”
Eur. Cells Mater.
,
20
, pp.
329
343
.
24.
Ravichandran
,
R.
,
Liao
,
S.
,
Ng
,
C.
,
Chan
,
C.
,
Raghunath
,
M.
, and
Ramakrishna
,
S.
,
2009
, “
Effects of Nanotopography on Stem Cell Phenotypes
,”
World J. Stem Cells
,
1
(
1
), pp.
55
66
.10.4252/wjsc.v1.i1.55
25.
Miller
,
D. C.
,
Haberstroh
,
K. M.
, and
Webster
,
T. J.
,
2007
, “
PLGA Nanometer Surface Features Manipulate Fibronectin Interactions for Improved Vascular Cell Adhesion
,”
J. Biomed. Mater. Res., Part A
,
81
(
3
), pp.
678
684
.10.1002/jbm.a.31093
26.
Chung
,
B. G.
,
Kang
,
L.
, and
Khademhosseini
,
A.
,
2007
, “
Micro- and Nanoscale Technologies for Tissue Engineering and Drug Discovery Applications
,”
Expert Opin. Drug Discov.
,
2
(
12
), pp.
1653
1668
.10.1517/17460441.2.12.1653
27.
Owens
,
G.
,
2008
, “
Nanoporous Stents With Enhanced Cellular Adhesion and Reduced Neointimal Formation
,” U.S. Patent No. 20080086198.
28.
Liu
,
Y. F.
,
2005
, “
Laser-Assisted Nanoscale Material Processing
,”
ASME
Paper No. IMECE2005-83047.10.1115/IMECE2005-83047
29.
West
,
P. R.
,
Ishi
,
S.
,
Naik
,
G.
,
Emani
,
N.
,
Shalaev
,
V.
, and
Boltasseva
,
A.
,
2010
, “
Searching for Better Plasmonic Materials
,”
Lasers Photonics Rev.
,
4
(
6
), pp.
795
808
.10.1002/lpor.200900055
30.
Phadke
,
M. S.
,
1989
,
Quality Engineering Using Robust Design
,
Prentice Hall International
,
Englewood Cliffs, NJ
.
31.
Kong
,
D.
,
Eisenstein
,
E.
,
Sketch
,
M.
, Jr.
,
Zidar
,
J.
,
Ryan
,
T.
,
Harrington
,
R.
,
Newman
,
M.
,
Smith
,
P.
,
Mark
,
D.
, and
Califf
,
R.
,
2004
, “
Economic Impact of Drug Eluting Stents on Hospital Systems: A Disease-State Model
,”
Am. Heart J.
,
147
(
3
), pp.
449
456
.10.1016/j.ahj.2003.11.005
32.
Kuukasjärvi
,
P.
,
Räsänen
,
P.
,
Malmivaara
,
A.
, and
Aronen
,
P.
,
2007
, “
Economic Evaluation of Drug-Eluting Stents: A Systematic Literature Review and Model-Based Cost-Utility Analysis
,”
Int. J. Technol. Assess. Health Care
,
23
(
4
), pp.
473
479
.
33.
Drug Eluting Stents: An Economic Evaluation
,” Last accessed May 18,
2015
, http://www.cadth.ca/media/pdf/372_drug_eluting_stents_ov_e.pdf
34.
Dobesh
,
P. P.
,
Stacy
,
Z. A.
,
Ansara
,
A. J.
, and
Enders
,
J. M.
,
2004
, “
Drug-Eluting Stents: A Mechanical and Pharmacologic Approach to Coronary Artery Disease
,” Last accessed May 18, 2015, http://www.medscape.com/viewarticle/495864_8
35.
Mensah
,
G.
, and
Brown
,
D.
,
2007
, “
An Overview of Cardiovascular Disease Burden in the United States
,”
Health Aff.
,
26
(
1
), pp.
38
48
.10.1377/hlthaff.26.1.38
You do not currently have access to this content.