Microtexturing of surfaces has various applications that often involve texturing over large (macroscale) areas with high precision and resolution. This demands scalability and speed of texturing while retaining feature sizes of the order of a few microns. Microchannels are a versatile microfeature, which are often used in microfluidic devices and can be arrayed or joined to form patterns and free-form geometries. We present a technique to fabricate microchannels on surfaces with high-speed and by using a multimaterial process, namely, laser induced plasma micromachining (LIPMM). The process has the potential to machine metals, ceramics, polymers, and other transparent, brittle, and hard-to-machine materials. The presented technique uses an optical system to modify the laser spot into the shape of a line, to fabricate microchannels directly without scanning as in the case of a regular circular spot. The process schematics are shown, and micromachining experiments on polished aluminum are discussed. Moreover, it is shown that the depth and width of the channels may be varied by changing process parameters like the pulse energy, pulse frequency, and number of exposures.

References

References
1.
Bico
,
J.
,
Thiele
,
U.
, and
Quéré
,
D.
,
2002
, “
Wetting of Textured Surfaces
,”
Colloids Surf., A
,
206
(
1–3
), pp.
41
46
.10.1016/S0927-7757(02)00061-4
2.
Bos
,
R.
,
van der Mei
,
H. C.
,
Gold
,
J.
, and
Busscher
,
H. J.
,
2000
, “
Retention of Bacteria on a Substratum Surface With Micro-Patterned Hydrophobicity
,”
FEMS Microbiol. Lett.
,
189
(
2
), pp.
311
315
.10.1111/j.1574-6968.2000.tb09249.x
3.
Hobbs
,
D. S.
,
MacLeod
,
B. D.
, and
Riccobono
,
J. R.
,
2007
, “
Update on the Development of High Performance Anti-Reflecting Surface Relief Micro-Structures
,”
Proc. SPIE
,
6545
, p.
65450
.
4.
Nakano
,
M.
,
Korenaga
,
A.
,
Korenaga
,
A.
,
Miyake
,
K.
,
Murakami
,
T.
,
Ando
,
Y.
,
Usami
,
H.
, and
Sasaki
,
S.
,
2007
, “
Applying Micro-Texture to Cast Iron Surfaces to Reduce the Friction Coefficient Under Lubricated Conditions
,”
Tribol. Lett.
,
28
(
2
), pp.
131
137
.10.1007/s11249-007-9257-2
5.
Geiger
,
M.
,
Popp
,
U.
, and
Engel
,
U.
,
2002
, “
Excimer Laser Micro Texturing of Cold Forging Tool Surfaces-Influence on Tool Life
,”
CIRP Ann.
,
51
(
1
), pp.
231
234
.10.1016/S0007-8506(07)61506-6
6.
Liu
,
X.
,
Du
,
D.
, and
Mourou
,
G.
,
1997
, “
Laser Ablation and Micromachining With Ultrashort Laser Pulses
,”
IEEE J. Quantum Electron.
,
33
(
10
), pp.
1706
1716
.10.1109/3.631270
7.
Ready
,
J. F.
, and
Dave
,
F. F.
, eds.,
2001
,
LIA Handbook of Laser Materials Processing
,
Magnolia Publishing
,
Pineville, LA
, pp.
20
25
.
8.
Che
,
D.
,
Saxena
,
I.
,
Han
,
P.
,
Guo
,
P.
, and
Ehmann
,
K. F.
,
2014
, “
Machining of Carbon Fiber Reinforced Plastics/Polymers: A Literature Review
,”
ASME J. Manuf. Sci. Eng.
,
136
(
3
), p.
034001
.10.1115/1.4026526
9.
Pallav
,
K.
, and
Ehmann
,
K. F.
,
2010
, “
Feasibility of Laser Induced Plasma Micro-Machining (LIP-MM)
,”
Precision Assembly Technologies and Systems
,
S.
Ratchev
, ed.,
Springer
,
Berlin
, pp.
73
80
.
10.
Pallav
,
K.
,
Han
,
P.
,
Ramkumar
,
J.
,
Nagahanumaiah
, and
Ehmann
,
K. F.
,
2014
, “
Comparative Assessment of the Laser Induced Plasma Micro-Machining (LIP-MM) and the Micro-EDM Processes
,”
ASME
Paper No. MSEC2011-50260, pp.
429
442
.10.1115/MSEC2011-50260
11.
Saxena
,
I.
, and
Ehmann
,
K.
,
2014
, “
Multi-Material Capability of Laser Induced Plasma Micro-Machining
,”
J. Micro Nano-Manuf.
,
2
(
3
), p.
031005
.10.1115/1.4027811
12.
Malhotra
,
R.
,
Saxena
,
I.
,
Ehmann
,
K.
, and
Cao
,
J.
,
2013
, “
Laser-Induced Plasma Micro-Machining (LIPMM) for Enhanced Productivity and Flexibility in Laser-Based Micro-Machining Processes
,”
CIRP Ann.
,
62
(
1
), pp.
211
214
.10.1016/j.cirp.2013.03.036
You do not currently have access to this content.