Mass-production of microfluidic devices is important for biomedical applications in which disposable devices are widely used. Injection molding is a well-known process for the production of devices on a mass scale at low-cost. In this study, the injection molding process is adapted for the fabrication of a microfluidic device with a single microchannel. To increase the product quality, high-precision mechanical machining is utilized for the manufacturing of the mold of the microfluidic device. A conventional injection molding machine is implemented in the process. Injection molding was performed at different mold temperatures. The warpage of the injected pieces was characterized by measuring the part deformation. The effect of the mold temperature on the quality of the final device was assessed in terms of the part deformation and bonding quality. From the experimental results, one-to-one correspondence between the warpage and the bonding quality of the molded pieces was observed. It was found that as the warpage of the pieces decreases, the bonding quality increases. A maximum point for the breaking pressure of the bonding and the minimum point for the warpage were found at the same mold temperature. This mold temperature was named as the optimum temperature for the designed microfluidic device. It was observed that the produced microfluidic devices at the mold temperature of 45 °C were able to withstand pressures up to 74 bar.

References

References
1.
Todd
,
R. H.
,
2004
,
Manufacturing Processes Reference Guide
,
Industrial Press
,
South Norwalk, CT
, pp.
240
241
.
2.
Bryce
,
D. M.
,
1996
,
Plastic Injection Molding: Manufacturing Process Fundamentals
,
Society of Manufacturing Engineering
,
Dearborn, MI
, pp.
1
2
.
3.
Kennedy
,
P. K.
,
2008
, “
Practical and Scientific Aspects of Injection Molding Simulation
,” Ph.D. thesis, Melbourne University, Parkville, Australia.
4.
Attie
,
U. M.
,
Marson
,
S.
, and
Alcock
,
J. R.
,
2009
, “
Micro-Injection Moulding of Polymer Microfluidic Devices
,”
Microfluid. Nanofluid.
,
7
(
1
), pp.
1
28
.10.1007/s10404-009-0421-x
5.
Kim
,
D. S.
,
Lee
,
S. H.
,
Ahn
,
C. H.
,
Lee
,
J. Y.
, and
Kwon
,
T. H.
,
2006
, “
Disposable Integrated Microfluidic Biochip for Blood Typing by Plastic Microinjection Moulding
,”
Lab Chip
,
6
(6), pp.
794
802
.10.1039/b516495h
6.
Mair
,
D. A.
,
Geiger
,
E.
,
Pisano
,
A. P.
,
Frechet
,
J. M. J.
, and
Svec
,
F.
,
2006
, “
Injection Molded Microfluidic Chips Featuring Integrated Interconnects
,”
Lab Chip
,
6
(10), pp.
1346
1354
.10.1039/b605911b
7.
Jung
,
W.-C.
,
Heo
,
Y.-M.
,
Yoon
,
G.-S.
,
Shin
,
K.-H.
,
Chang
,
S.-H.
,
Kim
,
G.-H.
, and
Cho
,
M.-W.
,
2007
, “
Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips
,”
Sensors
,
7
(
8
), pp.
1643
1654
.10.3390/s7081643
8.
Andresen
,
K. O.
,
Hansen
,
M.
,
Matschuk
,
M.
,
Jepsen
,
S. T.
,
Sorensen
,
H. S.
,
Utko
,
P.
,
Selmeczi
,
D.
,
Hansen
,
T. S.
,
Larsen
,
N. B.
,
Rozlosnik
,
N.
, and
Taboryski
,
R.
,
2010
, “
Injection Molded Chips With Integrated Conducting Polymer Electrodes for Electroporation of Cells
,”
J. Micromech. Microeng.
,
20
(
5
), p.
055010
.10.1088/0960-1317/20/5/055010
9.
Oh
,
H. J.
,
Park
,
J. H.
,
Song
,
Y. S.
, and
Youn
,
J. R.
,
2011
, “
Micro-Injection Moulding of Lab-on-a-Chip (LOC)
,”
Ann. Trans. Nord. Rheol. Soc.
,
19
, pp.
1
9
.
10.
Kim
,
G.-H.
,
Lee
,
J.-W.
,
Heo
,
Y.-M.
, and
Yoon
,
G.-S.
,
2012
, “
Fabrication of Polymeric Biochips With Micro-Fluidic Channel by Injection Molding Technology
,”
J. Mech. Eng. Autom.
,
2
(
1
), pp.
17
22
.10.5923/j.jmea.20120201.04
11.
Utko
,
P.
,
Persson
,
F.
,
Kristensen
,
A.
, and
Larsen
,
N. B.
,
2011
, “
Injection Molded Nanofluidic Chips: Fabrication Method and Functional Tests Using Single-Molecule DNA Experiments
,”
Lab Chip
,
11
(2), pp.
303
308
.10.1039/c0lc00260g
12.
Hupert
,
M.
,
Guy
,
W.
,
Llopis
,
S.
,
Shadpour
,
H.
,
Rani
,
S.
,
Nikitopoulos
,
D.
, and
Soper
,
S.
,
2007
, “
Evaluation of Micromilled Metal Mold Masters for the Replication of Microchip Electrophoresis Devices
,”
Microfluid. Nanofluid.
,
3
(
1
), pp.
1
11
.10.1007/s10404-006-0091-x
13.
Mecomber
,
J. S.
,
Hurd
,
D.
, and
Limbach
,
P. A.
,
2005
, “
Enhanced Machining of Micron-Scale Features in Microchip Molding Masters by CNC Milling
,”
Int. J. Mach. Tools Manuf.
,
45
(12–13), pp.
1542
1550
.10.1016/j.ijmachtools.2005.01.016
14.
Mecomber
,
J. S.
,
Stalcup
,
A. M.
,
Hurd
,
D.
,
Halsall
,
H. B.
,
Heineman
,
W. R.
,
Seliskar
,
C. J.
,
Wehmeyer
,
K. R.
, and
Limbach
,
P. A.
,
2006
, “
Analytical Performance of Polymer-Based Microfluidic Devices Fabricated by Computer Numerical Controlled Machining
,”
Anal. Chem.
,
78
(
3
), pp.
936
941
.10.1021/ac051523y
15.
Zhao
,
D. S.
,
Roy
,
B.
,
McCormick
,
M. T.
,
Kuhr
,
W. G.
, and
Brazill
,
S. A.
,
2003
, “
Rapid Fabrication of a Poly(Dimethylsiloxane) Microfluidic Capillary Gel Electrophoresis System Utilizing High Precision Machining
,”
Lab Chip
,
3
(2), pp.
93
99
.10.1039/b300577a
16.
Zeinali
,
S.
,
Cetin
,
B.
,
Buyukkocak
,
S.
, and
Ozer
,
M. B.
,
2014
, “
Fabrication of Microfluidic Devices for Dielectrophoretic and Acoustophoretic Applications Using High-Precision Machining
,”
16th International Conference on Machine Design and Production (UMTIK-2014)
,
Izmir
,
Turkey
, June 30–July 3, Paper No. 43.
17.
Kovacs
,
J.
, and
Siklo
,
B.
,
2011
, “
Test Method Development for Deformation Analysis of Injection Moulded Plastic Parts
,”
Polym. Test.
,
30
(
5
), pp.
543
547
.10.1016/j.polymertesting.2011.04.011
18.
Oh
,
H. J.
,
Lee
,
D. J.
,
Lee
,
C. G.
,
Jo
,
K. Y.
,
Lee
,
D. H.
,
Song
,
Y. S.
, and
Youn
,
J. R.
,
2013
, “
Warpage Analysis of a Micro-Molded Parts Prepared With Liquid Crystalline Polymer Based Composites
,”
Composites, Part A
,
53
, pp.
34
45
.10.1016/j.compositesa.2013.06.006
19.
Heckele
,
M.
, and
Schomburg
,
W. K.
,
2003
, “
Review on Micro Molding of Thermoplastic Polymers
,”
J. Micromech. Microeng.
,
14
(3), pp.
R1
R14
.10.1088/0960-1317/14/3/R01
20.
Robinson
,
M. G.
, and
Jackson
,
J. M.
,
2005
,
Etching, Machining, and Molding High-Aspect Ratio Microstructures
,
CRC Press
,
Boca Raton
, pp.
59
85
.
21.
Koska
,
A. K.
,
2013
, “
Injection Molding of Polymeric Microfluidic Devices
,” Master’s thesis, Bilkent University, Ankara, Turkey.
22.
Papautsky
,
I.
, and
Peterson
,
E. T. K.
,
2008
,
Micromolding, Micro and Nanofluidic Encyclopedia
,
Springer
,
Berlin
, pp.
1256
1257
.
23.
Becker
,
H.
, and
Gartner
,
C.
,
2000
, “
Polymer Microfabrication Methods for Microfluidic Analytical Applications
,”
Electrophoresis
,
21
(1), pp.
12
26
.10.1002/(SICI)1522-2683(20000101)21:1%3C12::AID-ELPS12%3E3.0.CO;2-7
24.
Zema
,
L.
,
Loreti
,
G.
,
Melocchi
,
A.
,
Maroni
,
A.
, and
Gazzaniga
,
A.
,
2012
, “
Injection Molding and Its Application to Drug Delivery
,”
J. Controlled Release
,
159
(
3
), pp.
324
331
.10.1016/j.jconrel.2012.01.001
25.
Nguyen
,
N.-T.
, and
Wereley
,
S. T.
,
2006
,
Fundamentals and Applications of Microfluidics
,
Artech House
,
London
, pp. 111–112, 123–124.
You do not currently have access to this content.