The authors previously developed a new fabrication method for a metal nanodot array, by combination of nanogroove grid patterning and thermal dewetting of metal deposited on a substrate. However, a comprehensive understanding of the thermal dewetting mechanism is necessary to improve the quality and control the variation of the metallic nanodot array. In this study, thermal dewetting-induced nanodot agglomeration mechanism is studied from a theoretical point of view. An analytical model is proposed, based on the total free energy of a dot and substrate system. The theoretical minimum and natural dot sizes show the same trend with an increase of contact angle. The theoretical model is validated by the experimental results.

References

References
1.
Sepulveda
,
B.
,
Angelome
,
P. C.
,
Lechuga
,
L. M.
, and
Liz-Marzan
,
L. M.
,
2009
, “
LSPR-Based Nanobiosensors
,”
Nanotoday
,
4
(
3
), pp.
244
251
.10.1016/j.nantod.2009.04.001
2.
Nozik
,
A. J.
,
2002
, “
Quantum Dot Solar Cells
,”
Phys. E
,
14
(
1–2
), pp.
115
120
.10.1016/S1386-9477(02)00374-0
3.
Okada
,
Y.
,
Oshima
,
R.
, and
Takata
,
A.
,
2009
, “
Characteristics of InAs/GaNAs Strain-Compensated Quantum Dot Solar Cell
,”
J. Appl. Phys.
,
106
(2), p.
024306
.10.1063/1.3176903
4.
Hosaka
,
S.
,
Mohamad
,
Z.
,
Shirai
,
M.
,
Sano
,
H.
,
Yin
,
Y.
,
Miyachi
,
A.
, and
Sone
,
H.
,
2008
, “
Nano-Dot and Nano-Pit Arrays With a Pitch of 25 nm × 25 nm Fabricated by EB Drawing, RIE and Nano-Imprinting for 1 Tb/In2 Storage
,”
Microelectron. Eng.
,
85
(
5–6
), pp.
774
777
.10.1016/j.mee.2007.12.081
5.
Sato
,
H.
, and
Homma
,
T.
,
2007
, “
Fabrication of Magnetic Nanodot Arrays for Patterned Magnetic Recording Media
,”
J. Nanosci. Nanotechnol.
,
7
(
1
), pp.
225
231
.10.1166/jnn.2007.016
6.
Chen
,
Z.
,
Lei
,
Y.
,
Chew
,
H. G.
,
Teo
,
L. W.
,
Choi
,
W. K.
, and
Chim
,
W. K.
,
2004
, “
Synthesis of Germanium Nanodots on Silicon Using an Anodic Alumina Membrane Mask
,”
J. Cryst. Growth
,
268
(
3–4
), pp.
560
563
.10.1016/j.jcrysgro.2004.04.091
7.
Ren
,
Z.
,
Zhang
,
X.
,
Zhang
,
J.
,
Li
,
X.
, and
Yang
,
B.
,
2009
, “
Building Cavities in Microspheres and Nanospheres
,”
Nanotechnology
,
20
(
6
), p.
065305
.10.1088/0957-4484/20/6/065305
8.
Hulteen
,
J. C.
, and
Van Duyne
,
R. P.
,
1995
, “
Nanosphere Lithography: A Materials General Fabrication Process for Periodic Particle Array Surfaces
,”
Am. Vac. Soc.
,
13
(
13
), pp.
1553
1558
.10.1116/1.579726
9.
Yang
,
S.-M.
,
Jang
,
S. G.
,
Choi
,
D.-G.
,
Kim
,
S.
, and
Yu
,
H. K.
,
2006
, “
Nanomachining by Colloidal Lithography
,”
Small
,
2
(
4
), pp.
458
475
.10.1002/smll.200500390
10.
Nakamura
,
Y.
,
Miwa
,
T.
, and
Ichikawa
,
M.
,
2011
, “
Nanocontact Heteroepitaxy of Thin GaSb and AlGaSb Films on Si Substrates Using Ultrahigh-Density Nanodot Seeds
,”
Nanotechnology
,
22
(
26
), p.
265301
.10.1088/0957-4484/22/26/265301
11.
Tersoff
,
J.
,
Teichert
,
C.
, and
Lagally
,
M. G.
,
1996
, “
Self-Organization in Growth of Quantum Dot Superlattices
,”
Phys. Rev. Lett.
,
76
(
10
), pp.
1675
1678
.10.1103/PhysRevLett.76.1675
12.
Lan
,
H.
, and
Ding
,
Y.
,
2012
, “
Ordering, Positioning and Uniformity of Quantum Dot Arrays
,”
Nanotoday
,
7
(
2
), pp.
94
123
.10.1016/j.nantod.2012.02.006
13.
Wang
,
D.
, and
Schaaf
,
P.
,
2011
, “
Two-Dimensional Nanoparticle Arrays Formed by Dewetting of Thin Gold Films Deposited on Pre-Patterned Substrates
,”
J. Mater. Sci.: Mater. Electron.
,
22
(
8
), pp.
1067
1070
.10.1007/s10854-010-0260-2
14.
Lin
,
C. H.
,
Jiang
,
L.
,
Chai
,
Y. H.
,
Xiao
,
H.
,
Chen
,
S. J.
, and
Tsai
,
H. L.
,
2010
, “
A Method to Fabricate 2D Nanoparticle Arrays
,”
Appl. Phys. A, Mater. Sci. Process.
,
98
(
4
), pp.
855
860
.10.1007/s00339-010-5552-0
15.
Yoshino
,
M.
,
Ohsawa
,
H.
, and
Yamanaka
,
A.
,
2011
, “
Rapid Fabrication of an Ordered Nano-Dot Array by Combination of Nano Plastic Forming and Annealing Method
,”
J. Micromech. Microeng.
,
21
(12), p.
125017
.10.1088/0960-1317/21/12/125017
16.
Li
,
Z.
,
Yoshino
,
M.
, and
Yamanaka
,
A.
,
2012
, “
Fabrication of Three-Dimensional Ordered Nanodot Array Structures by a Thermal Dewetting Method
,”
Nanotechnology
,
23
(
48
), p.
485303
.10.1088/0957-4484/23/48/485303
17.
Yoshino
,
M.
,
Umehara
,
N.
, and
Aravindan
,
S.
,
2008
, “
Development of Functional Surface by Nano-Plastic Forming
,”
Wear
,
266
(
5–6
), pp.
581
584
.10.1016/j.wear.2008.04.064
18.
Kurnia
,
W.
, and
Yoshino
,
M.
,
2009
, “
Nano/Micro Structure Fabrication of Metal Surfaces Using the Combination of Nano Plastic Forming, Coating and Roller Imprinting Processes
,”
J. Micromech. Microeng.
,
19
(
12
), p.
125028
.10.1088/0960-1317/19/12/125028
19.
Cheynis
,
F.
,
Bussmann
,
E.
,
Leroy
,
F.
,
Passanante
,
T.
, and
Muller
,
P.
,
2011
, “
Dewetting Dynamics of Silicon-On-Insulator Thin Films
,”
Phys. Rev. B
,
84
(24), p.
245439
.10.1103/PhysRevB.84.245439
20.
Zhigal'skii
,
G. P.
, and
Jones
,
B. K.
,
2003
,
The Physical Properties of Thin Metal Films
,
Taylor & Francis
,
London
, Chap. 4.
21.
Mullins
,
W. W.
,
1957
, “
Theory of Thermal Grooving
,”
J. Appl. Phys.
,
28
(24), pp.
333
339
.10.1063/1.1722742
22.
Jiran
,
E.
, and
Thompson
,
C. V.
,
1990
, “
Capillary Instabilities in Thin Films
,”
J. Electron. Mater.
,
19
(
11
), pp.
1153
1160
.10.1007/BF02673327
23.
McCallum
,
M. S.
,
Voorhees
,
P. W.
,
Miksis
,
M. J.
,
Davis
,
S. H.
, and
Wong
,
H.
,
1996
, “
Capillary Instabilities in Solid Thin Films: Lines
,”
J. Appl. Phys.
,
79
(
10
), pp.
7604
7611
.10.1063/1.362343
24.
Danielson
,
D. T.
,
Sparacin
,
D. K.
,
Michel
,
J.
, and
Kimerling
,
L. C.
,
2006
, “
Surface-Energy-Driven Dewetting Theory of Silicon-On-Insulator Agglomeration
,”
J. Appl. Phys.
,
100
(
8
), p.
083507
.10.1063/1.2357345
25.
Young
,
T.
,
1805
, “
An Essay on the Cohesion of Fluids
,”
Philos. Trans. R. Soc. London
,
95
, pp.
65
87
.10.1098/rstl.1805.0005
26.
Wong
,
H.
,
Voorhees
,
P. W.
,
Miksis
,
M. J.
, and
Davis
,
S. H.
,
2000
, “
Periodic Mass Shedding of a Retracting Solid Film Step
,”
Acta Mater.
,
48
(8), pp.
1719
1728
.10.1016/S1359-6454(00)00016-1
You do not currently have access to this content.