In an electrospray, large electric potentials are used to generate a spray of highly charged droplets. Colloidal dispersions, consisting of nanoparticles in a volatile solvent, can be atomized using electrospray. Printing occurs by directing the emitted droplets toward a target substrate (TS). The solvent evaporation is rapid and dry nanoparticles are produced before reaching the surface. In this study, we investigate the structure of nanoparticle deposits printed using electrospray. Using dark field microscopy, four regimes are identified that mark the evolution of the deposit structure at early times. Electrospray imparts an excess electric charge onto the emitted particles. It is shown that the mutual Coulombic interaction between the particles governs their transport and ultimately the microstructure of the printed deposits. Electrospray offers enhanced control over the microstructure of printed nanomaterial deposits compared to traditional printing techniques. This has significant implications for the manufacturing of flexible electronic and photonic devices.

References

References
1.
Fernandez de la Mora
,
J.
,
2007
, “
The Fluid Dynamics of Taylor Cones
,”
Annu. Rev. Fluid Mech.
,
39
, pp.
217
243
.10.1146/annurev.fluid.39.050905.110159
2.
Ikonomou
,
M.
,
Blades
,
A.
, and
Kebarle
,
P.
,
1998
, “
Electrospray-Ion Spray: A Comparison of Mechanisms and Performance
,”
Anal. Chem.
,
25
, pp.
1989
1998
.
3.
Fernandez de la Mora
,
J.
, and
Loscertales
,
I.
,
2006
, “
The Current Emitted by Highly Conducting Taylor Cones
,”
J. Fluid Mech.
,
260
, pp.
155
184
.10.1017/S0022112094003472
4.
Suh
,
J.
,
Han
,
B.
,
Okuyama
,
K.
, and
Choi
,
M.
,
2005
, “
Highly Charging of Nanoparticles Through Electrospray of Nanoparticle Suspension
,”
J. Colloid Interface Sci.
,
287
(
1
), pp.
135
140
.10.1016/j.jcis.2005.01.078
5.
Park
,
J.
,
Hardy
,
M.
,
Kang
,
S.
,
Barton
,
K.
,
Adair
,
K.
,
Mukhopadhyay
,
D.
,
Lee
,
C.
,
Strano
,
M.
,
Alleyne
,
A.
,
Geordiadis
,
J.
,
Ferreira
,
P.
, and
Rogers
,
J.
,
2007
, “
High-Resolution Electrohydrodynamic Jet Printing
,”
Nat. Mater.
,
6
, pp.
782
789
.10.1038/nmat1974
6.
Lee
,
H.
,
You
,
S.
,
Woo
,
C.
,
Lim
,
K.
,
Jun
,
K.
, and
Choi
,
M.
,
2009
, “
Focused Patterning of Nanoparticles by Controlling Electric Field Induced Particle Motion
,”
Appl. Phys. Lett.
,
94
(
5
), p.
053104
.10.1063/1.3077158
7.
Deegan
,
R.
,
2000
, “
Pattern Formation in Drying Drops
,”
Phys. Rev. E
,
61
(
1
), pp.
475
485
.10.1103/PhysRevE.61.475
8.
Jaworek
,
A.
,
2006
, “
Electrospray Droplet Sources for Thin Film Deposition
,”
J. Mater. Sci.
,
42
(
1
), pp.
266
297
.10.1007/s10853-006-0842-9
9.
Chiarot
,
P.
,
Sullivan
,
P.
, and
Ben Mrad
,
R.
,
2011
, “
An Overview of Electrospray Applications in MEMS and Microfluidic Systems
,”
J. Microelectromech. Syst.
,
20
(
6
), pp.
1241
1249
.10.1109/JMEMS.2011.2168810
10.
O'Shea
,
J.
,
Taylor
,
J.
,
Swarbrick
,
J.
,
Magnano
,
G.
,
Mayor
,
L.
, and
Schulte
,
K.
,
2007
, “
Electrospray Deposition of Carbon Nanotubes in Vacuum
,”
Nanotechnology
,
18
(
3
), p.
035707
.10.1088/0957-4484/18/3/035707
11.
Welle
,
A.
, and
Jacobs
,
H.
,
2005
, “
Printing of Organic and Inorganic Nanomaterials Using Electrospray Ionization and Coulomb-Force-Directed Assembly
,”
Appl. Phys. Lett.
,
87
(
26
), p.
263119
.10.1063/1.2149985
12.
Lenggoro
,
I.
,
Lee
,
H.
, and
Okuyama
,
K.
,
2006
, “
Nanoparticle Assembly on Patterned ‘Plus/Minus' Surfaces From Electrospray of Colloidal Dispersion
,”
J. Colloid Interface Sci.
,
303
(
1
), pp.
124
130
.10.1016/j.jcis.2006.07.033
13.
Kim
,
H.
,
Kim
,
J.
,
Yang
,
H.
,
Suh
,
J.
,
Kim
,
T.
,
Han
,
B.
,
Kim
,
S.
,
Kim
,
D.
,
Pikhitsa
,
P.
, and
Choi
,
M.
,
2006
, “
Parallel Patterning of Nanoparticles Via Electrodynamic Focusing of Charged Aerosols
,”
Nat. Nanotechnol.
,
1
, pp.
117
121
.10.1038/nnano.2006.94
14.
Ganan-Calvo
,
A.
,
Davila
,
J.
, and
Barrero
,
A.
,
1997
, “
Current and Droplet Size in the Electrospraying of Liquids. Scaling Laws
,”
J. Aerosol Sci.
,
28
(
2
), pp.
249
275
.10.1016/S0021-8502(96)00433-8
You do not currently have access to this content.