The objective of this research is to develop a novel, multimaterial additive manufacturing technique for fabricating laminated polymer nanocomposite structures that have characteristic length-scales in the tens of millimeters range. The three-dimensional (3D) printing technology presented in this paper combines the conventional inkjet-based printing of ultraviolet (UV) curable polymers with the deposition of either aligned or random nanoscale fiber mats, in between each printed layer. The fibers are first generated using an electrospinning process that produces the roll of fibers. These fibers are then transferred to the part being manufactured using a stamping operation. The process has been proven to manufacture multimaterial laminated nanocomposites having different 3D geometries. The dimensional accuracy of the parts is seen to be a function of the interaction between the different UV-curable polymer inks. In general, the addition of the nanofibers in the form of laminates is seen to improve the mechanical properties of the material, with the Young’s modulus and the ultimate breaking stress showing the most improvement. The pinning and deflection of microcracks by the nanoscale fiber mats has been identified to be the underlying mechanism responsible for these improved mechanical properties. The thermogravimetric analysis (TGA) reveals that these improvements in the mechanical properties are obtained without drastically altering the thermal degradation pattern of the base polymer.

References

References
1.
Sheik-Ahmad
,
J. Y.
,
2009
,
Machining of Polymer Composites
,
Springer Publications
, New York.
2.
Reddy
,
J. N.
,
2003
,
Mechanics of Laminated Composite Plates and Shells: Theory and Analysis
,
CRC Press
, Boca Raton, FL.
3.
Andrady
,
A. L.
,
2008
,
Science and Technology of Polymer Nanofibers
,
Wiley Publications
, Hoboken, NJ. 10.1002/9780470229842
4.
Pisignano
,
D.
,
2013
,
Polymer Nanofibers: Building Blocks for Nanotechnology
,
RSC Publishing
, Cambridge, UK.
5.
Reneker
,
D. H.
, and
Fong
,
H.
,
2006
,
Polymeric Nanofibers
, Vol. 198,
American Chemical Society
,
Washington, D.C
.10.1021/bk-2006-0918
6.
Rajabian
,
M.
,
Samadfam
,
M.
,
Naderi
,
G.
, and
Beheshty
,
M. H.
,
2012
, “
Shearing and Mixing Effects on Synthesis and Properties of Organoclay/Polyester Nanocomposites
,”
Rheol. Acta
,
51
(
11–12
), pp.
1007
1019
.10.1007/s00397-012-0659-1
7.
Arora
,
I.
,
Samuel
,
J.
, and
Koratkar
,
N.
,
2013
, “
Experimental Investigation of the Machinability of Epoxy Reinforced With Graphene Platelets
,”
ASME J. Manuf. Sci. Eng.
,
135
(
4
), p.
041007
.10.1115/1.4024814
8.
Kandanur
,
S.
,
Rafiee
,
M.
,
Yavari
,
F.
,
Schrameyer
,
M.
,
Yu
,
Z.
,
Blanchet
,
T.
, and
Koratkar
,
N.
,
2012
, “
Suppression of Wear in Graphene Polymer Composites
,”
Carbon
,
50
(
9
), pp.
3178
3183
.10.1016/j.carbon.2011.10.038
9.
Khan
,
S. U.
,
Pothnis
,
J. R.
, and
Kim
,
J. K.
,
2013
, “
Effects of Carbon Nanotube Alignment on Electrical and Mechanical Properties of Epoxy Nanocomposites
,”
Composites, Part A
,
49
, pp.
26
34
.10.1016/j.compositesa.2013.01.015
10.
Correa-Duarte
,
M. A.
,
Grzelczak
,
M.
,
Salgueiriño-Maceira
,
V.
,
Giersig
,
M.
,
Liz-Marzán
,
L. M.
,
Farle
,
M.
,
Sierazdki
,
K.
, and
Diaz
,
R.
,
2005
, “
Alignment of Carbon Nanotubes Under Low Magnetic Fields Through Attachment of Magnetic Nanoparticles
,”
J. Phys. Chem. B
,
109
(
41
), pp.
19060
19063
.10.1021/jp0544890
11.
Bradford
,
P. D.
,
Wang
,
X.
,
Zhao
,
H.
,
Maria
,
J. P.
,
Jia
,
Q.
, and
Zhu
,
Y. T.
,
2010
, “
A Novel Approach to Fabricate High Volume Fraction Nanocomposites With Long Aligned Carbon Nanotubes
,”
Compos. Sci. Technol.
,
70
(
13
), pp.
1980
1985
.10.1016/j.compscitech.2010.07.020
12.
Ivanova
,
O. S.
,
Williams
,
C. B.
, and
Campbell
,
T. A.
,
2013
, “
Additive Manufacturing (AM) and Nanotechnology: Promises and Challenges
,”
Rapid Prototyping J.
,
19
(
5
), pp.
353
364
.10.1108/RPJ-12-2011-0127
13.
Soldano
,
C.
,
Talapatra
,
S.
,
Kar
,
S.
,
Vajtai
,
R.
, and
Ajayan
,
P.
,
2006
, “
Inkjet Printing of Electrically Conductive Patterns of Carbon Nanotubes
,”
Small
,
2
(
8–9
), pp.
1021
1025
.10.1002/smll.200600061
14.
Elliott
,
A. M.
,
Ivanova
,
O. S.
,
Williams
,
C. B.
, and
Campbell
,
T. A.
,
2013
, “
Inkjet Printing of Quantum Dots in Photopolymer for Use in Additive Manufacturing of Nanocomposites
,”
Adv. Eng. Mater.
,
15
(
10
), pp.
903
907
.10.1002/adem.201300020
15.
Chronakis
, I
. S.
,
2005
, “
Novel Nanocomposites and Nanoceramics Based on Polymer Nanofibers Using Electrospinning Process—A Review
,”
J. Mater. Process. Technol.
,
167
(
2–3
), pp.
283
293
.10.1016/j.jmatprotec.2005.06.053
16.
Cloupeau
,
M.
, and
Prunet-Foch
,
B.
,
1994
, “
Electrohydrodynamic Spraying Functioning Modes: A Critical Review
,”
J. Aerosol Sci.
,
25
(
6
), pp.
1021
1036
.10.1016/0021-8502(94)90199-6
17.
Teo
,
W. E.
, and
Ramakrishna
,
S.
,
2006
, “
A Review on Electrospinning Design and Nanofibre Assemblies
,”
Nanotechnology
,
17
(
14
), pp.
89
106
.10.1088/0957-4484/17/14/R01
18.
Bazbouz
,
M. B.
, and
Sylios
,
G. K.
,
2008
, “
Alignment and Optimization of Nylon 6 Nanofibers by Electrospinning
,”
J. Appl. Polym. Sci.
,
107
(
5
), pp.
3023
3032
.10.1002/app.27407
19.
Honegger
,
A. E.
,
Langstaff
,
G. Q.
,
Phillip
,
A. G.
,
Vanravenswaay
,
T. D.
,
Kapoor
,
S. G.
, and
DeVor
,
R. E.
,
2006
, “
Development of an Automated Microfactory: Part 1–Microfactory Architecture and Sub-Systems Development
,”
Trans. NAMRI SME
,
34
, pp.
333
340
.10.1.1.124.5435
20.
De Gans
,
B. J.
,
Duineveld
,
P. C.
, and
Schubert
,
U. S.
,
2004
, “
Inkjet Printing of Polymers: Sate of the Art and Future Developments
,”
Adv. Mater.
,
16
(
3
), pp.
203
213
.10.1002/adma.200300385
21.
Stowe
,
R. W.
,
2005
, “
Techniques of Optimizing the UV Ink Jet Curing Process
,”
Proceedings of International Conference on Digital Printing Technologies
, pp.
141
144
.
22.
Fakhfouri
,
V.
,
Mermoud
,
G.
,
Kim
,
J. Y.
,
Martinoli
,
A.
, and
Brugger
,
J.
,
2009
, “
Drop-on-Demand Inkjet Printing of SU-8 Polymer
,”
Micro Nanosyst.
,
1
(
1
), pp.
63
67
.10.2174/1876402910901010063
23.
Klang
,
J. A.
, and
Balcerski
,
J.
,
2002
, “
UV Curable Ink Jet Raw Material Challenges
,”
International Conference on Digital Printing Technologies
, pp.
366
368
.
25.
Wang
,
L.
,
Chen
,
L.
,
Wu
,
J.
,
To
,
M. L.
,
He
,
C.
, and
Yee
,
A. F.
,
2005
, “
Epoxy Nanocomposites With Highly Exfoliated Clay: Mechanical Properties and Fracture Mechanisms
,”
Macromolecules
,
38
(
3
), pp.
788
800
.10.1021/ma048465n
26.
Rafiee
,
M. A.
,
Rafiee
,
J.
,
Srivastava
,
I.
,
Wang
,
Z.
,
Song
,
H.
,
Yu
,
Z.
, and
Koratkar
,
N.
,
2010
, “
Fracture and Fatigue in Graphene Nanocomposites
,”
Small
,
6
(
2
), pp.
179
183
.10.1002/smll.200901480
27.
Ferrarezi
,
M. M. F.
,
de Oliveira
,
T. M.
,
da Silva
,
L. C. E.
, and
Gonçalves
,
M. C.
,
2013
, “
Poly(Ethylene Glycol) as a Compatibilizer for Poly(Lactic Acid)/Thermoplastic Starch Blends
,”
J. Polym. Environ.
,
21
(
1
), pp.
151
159
.10.1007/s10924-012-0480-z
28.
Saeed
,
K.
,
Park
,
S. Y.
,
Haider
,
S.
, and
Baek
,
J. B.
,
2009
, “
In Situ Polymerization of Multi-Walled Carbon Nanotube/Nylon-6 Nanocomposites and Their Electrospun Nanofibers
,”
Nanoscale Res. Lett.
,
4
(
1
), pp.
39
46
.10.1007/s11671-008-9199-0
You do not currently have access to this content.